Metamath Proof Explorer


Theorem pmat0op

Description: The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p P = Poly 1 R
pmatring.c C = N Mat P
pmat0op.z 0 ˙ = 0 P
Assertion pmat0op N Fin R Ring 0 C = i N , j N 0 ˙

Proof

Step Hyp Ref Expression
1 pmatring.p P = Poly 1 R
2 pmatring.c C = N Mat P
3 pmat0op.z 0 ˙ = 0 P
4 1 ply1ring R Ring P Ring
5 2 3 mat0op N Fin P Ring 0 C = i N , j N 0 ˙
6 4 5 sylan2 N Fin R Ring 0 C = i N , j N 0 ˙