Metamath Proof Explorer


Theorem pmat0op

Description: The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p P=Poly1R
pmatring.c C=NMatP
pmat0op.z 0˙=0P
Assertion pmat0op NFinRRing0C=iN,jN0˙

Proof

Step Hyp Ref Expression
1 pmatring.p P=Poly1R
2 pmatring.c C=NMatP
3 pmat0op.z 0˙=0P
4 1 ply1ring RRingPRing
5 2 3 mat0op NFinPRing0C=iN,jN0˙
6 4 5 sylan2 NFinRRing0C=iN,jN0˙