Metamath Proof Explorer
		
		
		
		Description:  Entries of the identity polynomial matrix over a ring, deduction form.
       (Contributed by AV, 16-Nov-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | pmatring.p |  | 
					
						|  |  | pmatring.c |  | 
					
						|  |  | pmat0op.z |  | 
					
						|  |  | pmat1op.o |  | 
					
						|  |  | pmat1ovd.n |  | 
					
						|  |  | pmat1ovd.r |  | 
					
						|  |  | pmat1ovd.i |  | 
					
						|  |  | pmat1ovd.j |  | 
					
						|  |  | pmat1ovd.u |  | 
				
					|  | Assertion | pmat1ovd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatring.p |  | 
						
							| 2 |  | pmatring.c |  | 
						
							| 3 |  | pmat0op.z |  | 
						
							| 4 |  | pmat1op.o |  | 
						
							| 5 |  | pmat1ovd.n |  | 
						
							| 6 |  | pmat1ovd.r |  | 
						
							| 7 |  | pmat1ovd.i |  | 
						
							| 8 |  | pmat1ovd.j |  | 
						
							| 9 |  | pmat1ovd.u |  | 
						
							| 10 | 1 | ply1ring |  | 
						
							| 11 | 6 10 | syl |  | 
						
							| 12 | 2 4 3 5 11 7 8 9 | mat1ov |  |