Metamath Proof Explorer


Theorem pmtridfv2

Description: Value at Y of the transposition of X and Y (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022)

Ref Expression
Hypotheses pmtridf1o.a φAV
pmtridf1o.x φXA
pmtridf1o.y φYA
pmtridf1o.t T=ifX=YIApmTrspAXY
Assertion pmtridfv2 φTY=X

Proof

Step Hyp Ref Expression
1 pmtridf1o.a φAV
2 pmtridf1o.x φXA
3 pmtridf1o.y φYA
4 pmtridf1o.t T=ifX=YIApmTrspAXY
5 fvresi YAIAY=Y
6 3 5 syl φIAY=Y
7 6 adantr φX=YIAY=Y
8 simpr φX=YX=Y
9 8 iftrued φX=YifX=YIApmTrspAXY=IA
10 4 9 eqtrid φX=YT=IA
11 10 fveq1d φX=YTY=IAY
12 7 11 8 3eqtr4d φX=YTY=X
13 simpr φXYXY
14 13 neneqd φXY¬X=Y
15 14 iffalsed φXYifX=YIApmTrspAXY=pmTrspAXY
16 4 15 eqtrid φXYT=pmTrspAXY
17 16 fveq1d φXYTY=pmTrspAXYY
18 1 adantr φXYAV
19 2 adantr φXYXA
20 3 adantr φXYYA
21 eqid pmTrspA=pmTrspA
22 21 pmtrprfv2 AVXAYAXYpmTrspAXYY=X
23 18 19 20 13 22 syl13anc φXYpmTrspAXYY=X
24 17 23 eqtrd φXYTY=X
25 12 24 pm2.61dane φTY=X