Metamath Proof Explorer


Theorem polidi

Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of ReedSimon p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 . (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)

Ref Expression
Hypotheses polid.1 A
polid.2 B
Assertion polidi AihB=normA+B2-normA-B2+inormA+iB2normA-iB24

Proof

Step Hyp Ref Expression
1 polid.1 A
2 polid.2 B
3 1 2 2 1 polid2i AihB=A+BihA+B-A-BihA-B+iA+iBihA+iBA-iBihA-iB4
4 1 2 hvaddcli A+B
5 4 normsqi normA+B2=A+BihA+B
6 1 2 hvsubcli A-B
7 6 normsqi normA-B2=A-BihA-B
8 5 7 oveq12i normA+B2normA-B2=A+BihA+BA-BihA-B
9 ax-icn i
10 9 2 hvmulcli iB
11 1 10 hvaddcli A+iB
12 11 normsqi normA+iB2=A+iBihA+iB
13 1 10 hvsubcli A-iB
14 13 normsqi normA-iB2=A-iBihA-iB
15 12 14 oveq12i normA+iB2normA-iB2=A+iBihA+iBA-iBihA-iB
16 15 oveq2i inormA+iB2normA-iB2=iA+iBihA+iBA-iBihA-iB
17 8 16 oveq12i normA+B2-normA-B2+inormA+iB2normA-iB2=A+BihA+B-A-BihA-B+iA+iBihA+iBA-iBihA-iB
18 17 oveq1i normA+B2-normA-B2+inormA+iB2normA-iB24=A+BihA+B-A-BihA-B+iA+iBihA+iBA-iBihA-iB4
19 3 18 eqtr4i AihB=normA+B2-normA-B2+inormA+iB2normA-iB24