Metamath Proof Explorer


Theorem posdifd

Description: Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
Assertion posdifd φA<B0<BA

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 posdif ABA<B0<BA
4 1 2 3 syl2anc φA<B0<BA