Metamath Proof Explorer


Theorem ppiublem2

Description: A prime greater than 3 does not divide 2 or 3 , so its residue mod 6 is 1 or 5 . (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Assertion ppiublem2 P4PPmod615

Proof

Step Hyp Ref Expression
1 prmz PP
2 1 adantr P4PP
3 6nn 6
4 zmodfz P6Pmod6061
5 2 3 4 sylancl P4PPmod6061
6 6m1e5 61=5
7 6 oveq2i 061=05
8 5 7 eleqtrdi P4PPmod605
9 6re 6
10 9 leidi 66
11 noel ¬Pmod6
12 11 pm2.21i Pmod6Pmod615
13 5lt6 5<6
14 3 nnzi 6
15 5nn 5
16 15 nnzi 5
17 fzn 655<665=
18 14 16 17 mp2an 5<665=
19 13 18 mpbi 65=
20 12 19 eleq2s Pmod665Pmod615
21 20 a1i P4PPmod665Pmod615
22 10 21 pm3.2i 66P4PPmod665Pmod615
23 5nn0 50
24 df-6 6=5+1
25 15 elexi 5V
26 25 prid2 515
27 26 3mix3i 2535515
28 22 23 24 27 ppiublem1 56P4PPmod655Pmod615
29 4nn0 40
30 df-5 5=4+1
31 z4even 24
32 31 3mix1i 2434415
33 28 29 30 32 ppiublem1 46P4PPmod645Pmod615
34 3nn0 30
35 df-4 4=3+1
36 3z 3
37 iddvds 333
38 36 37 ax-mp 33
39 38 3mix2i 2333315
40 33 34 35 39 ppiublem1 36P4PPmod635Pmod615
41 2nn0 20
42 df-3 3=2+1
43 z2even 22
44 43 3mix1i 2232215
45 40 41 42 44 ppiublem1 26P4PPmod625Pmod615
46 1nn0 10
47 df-2 2=1+1
48 1ex 1V
49 48 prid1 115
50 49 3mix3i 2131115
51 45 46 47 50 ppiublem1 16P4PPmod615Pmod615
52 0nn0 00
53 1e0p1 1=0+1
54 z0even 20
55 54 3mix1i 2030015
56 51 52 53 55 ppiublem1 06P4PPmod605Pmod615
57 56 simpri P4PPmod605Pmod615
58 8 57 mpd P4PPmod615