Description: A prime greater than 3 does not divide 2 or 3 , so its residue mod 6 is 1 or 5 . (Contributed by Mario Carneiro, 12-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ppiublem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz | |
|
2 | 1 | adantr | |
3 | 6nn | |
|
4 | zmodfz | |
|
5 | 2 3 4 | sylancl | |
6 | 6m1e5 | |
|
7 | 6 | oveq2i | |
8 | 5 7 | eleqtrdi | |
9 | 6re | |
|
10 | 9 | leidi | |
11 | noel | |
|
12 | 11 | pm2.21i | |
13 | 5lt6 | |
|
14 | 3 | nnzi | |
15 | 5nn | |
|
16 | 15 | nnzi | |
17 | fzn | |
|
18 | 14 16 17 | mp2an | |
19 | 13 18 | mpbi | |
20 | 12 19 | eleq2s | |
21 | 20 | a1i | |
22 | 10 21 | pm3.2i | |
23 | 5nn0 | |
|
24 | df-6 | |
|
25 | 15 | elexi | |
26 | 25 | prid2 | |
27 | 26 | 3mix3i | |
28 | 22 23 24 27 | ppiublem1 | |
29 | 4nn0 | |
|
30 | df-5 | |
|
31 | z4even | |
|
32 | 31 | 3mix1i | |
33 | 28 29 30 32 | ppiublem1 | |
34 | 3nn0 | |
|
35 | df-4 | |
|
36 | 3z | |
|
37 | iddvds | |
|
38 | 36 37 | ax-mp | |
39 | 38 | 3mix2i | |
40 | 33 34 35 39 | ppiublem1 | |
41 | 2nn0 | |
|
42 | df-3 | |
|
43 | z2even | |
|
44 | 43 | 3mix1i | |
45 | 40 41 42 44 | ppiublem1 | |
46 | 1nn0 | |
|
47 | df-2 | |
|
48 | 1ex | |
|
49 | 48 | prid1 | |
50 | 49 | 3mix3i | |
51 | 45 46 47 50 | ppiublem1 | |
52 | 0nn0 | |
|
53 | 1e0p1 | |
|
54 | z0even | |
|
55 | 54 | 3mix1i | |
56 | 51 52 53 55 | ppiublem1 | |
57 | 56 | simpri | |
58 | 8 57 | mpd | |