Metamath Proof Explorer


Theorem prcoftposcurfucoa

Description: The pre-composition functor is the transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r R = D FuncCat E
prcoffunc.e φ E Cat
prcoftposcurfuco.q Q = C FuncCat D
prcoftposcurfuco.o No typesetting found for |- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) with typecode |-
prcoftposcurfucoa.m No typesetting found for |- ( ph -> M = ( ( 1st ` .o. ) ` F ) ) with typecode |-
prcoftposcurfucoa.f φ F C Func D
Assertion prcoftposcurfucoa Could not format assertion : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = M ) with typecode |-

Proof

Step Hyp Ref Expression
1 prcoffunc.r R = D FuncCat E
2 prcoffunc.e φ E Cat
3 prcoftposcurfuco.q Q = C FuncCat D
4 prcoftposcurfuco.o Could not format ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) : No typesetting found for |- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) with typecode |-
5 prcoftposcurfucoa.m Could not format ( ph -> M = ( ( 1st ` .o. ) ` F ) ) : No typesetting found for |- ( ph -> M = ( ( 1st ` .o. ) ` F ) ) with typecode |-
6 prcoftposcurfucoa.f φ F C Func D
7 relfunc Rel C Func D
8 1st2nd Rel C Func D F C Func D F = 1 st F 2 nd F
9 7 6 8 sylancr φ F = 1 st F 2 nd F
10 9 oveq2d Could not format ( ph -> ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) with typecode |-
11 9 fveq2d Could not format ( ph -> ( ( 1st ` .o. ) ` F ) = ( ( 1st ` .o. ) ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) : No typesetting found for |- ( ph -> ( ( 1st ` .o. ) ` F ) = ( ( 1st ` .o. ) ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) with typecode |-
12 5 11 eqtrd Could not format ( ph -> M = ( ( 1st ` .o. ) ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) : No typesetting found for |- ( ph -> M = ( ( 1st ` .o. ) ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) with typecode |-
13 6 func1st2nd φ 1 st F C Func D 2 nd F
14 1 2 3 4 12 13 prcoftposcurfuco Could not format ( ph -> ( <. D , E >. -o.F <. ( 1st ` F ) , ( 2nd ` F ) >. ) = M ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F <. ( 1st ` F ) , ( 2nd ` F ) >. ) = M ) with typecode |-
15 10 14 eqtrd Could not format ( ph -> ( <. D , E >. -o.F F ) = M ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = M ) with typecode |-