Metamath Proof Explorer


Theorem prdom2

Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion prdom2 ACBDAB2𝑜

Proof

Step Hyp Ref Expression
1 dfsn2 A=AA
2 ensn1g ACA1𝑜
3 endom A1𝑜A1𝑜
4 1sdom2 1𝑜2𝑜
5 domsdomtr A1𝑜1𝑜2𝑜A2𝑜
6 sdomdom A2𝑜A2𝑜
7 5 6 syl A1𝑜1𝑜2𝑜A2𝑜
8 3 4 7 sylancl A1𝑜A2𝑜
9 2 8 syl ACA2𝑜
10 1 9 eqbrtrrid ACAA2𝑜
11 preq2 B=AAB=AA
12 11 breq1d B=AAB2𝑜AA2𝑜
13 10 12 imbitrrid B=AACAB2𝑜
14 13 eqcoms A=BACAB2𝑜
15 14 adantrd A=BACBDAB2𝑜
16 pr2ne ACBDAB2𝑜AB
17 16 biimprd ACBDABAB2𝑜
18 endom AB2𝑜AB2𝑜
19 17 18 syl6com ABACBDAB2𝑜
20 15 19 pm2.61ine ACBDAB2𝑜