Metamath Proof Explorer


Theorem prdsabld

Description: The product of a family of Abelian groups is an Abelian group. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdscmnd.y Y=S𝑠R
prdscmnd.i φIW
prdscmnd.s φSV
prdsgabld.r φR:IAbel
Assertion prdsabld φYAbel

Proof

Step Hyp Ref Expression
1 prdscmnd.y Y=S𝑠R
2 prdscmnd.i φIW
3 prdscmnd.s φSV
4 prdsgabld.r φR:IAbel
5 ablgrp aAbelaGrp
6 5 ssriv AbelGrp
7 fss R:IAbelAbelGrpR:IGrp
8 4 6 7 sylancl φR:IGrp
9 1 2 3 8 prdsgrpd φYGrp
10 ablcmn aAbelaCMnd
11 10 ssriv AbelCMnd
12 fss R:IAbelAbelCMndR:ICMnd
13 4 11 12 sylancl φR:ICMnd
14 1 2 3 13 prdscmnd φYCMnd
15 isabl YAbelYGrpYCMnd
16 9 14 15 sylanbrc φYAbel