Metamath Proof Explorer


Theorem prdsgrpd

Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsgrpd.y Y=S𝑠R
prdsgrpd.i φIW
prdsgrpd.s φSV
prdsgrpd.r φR:IGrp
Assertion prdsgrpd φYGrp

Proof

Step Hyp Ref Expression
1 prdsgrpd.y Y=S𝑠R
2 prdsgrpd.i φIW
3 prdsgrpd.s φSV
4 prdsgrpd.r φR:IGrp
5 eqidd φBaseY=BaseY
6 eqidd φ+Y=+Y
7 grpmnd aGrpaMnd
8 7 ssriv GrpMnd
9 fss R:IGrpGrpMndR:IMnd
10 4 8 9 sylancl φR:IMnd
11 1 2 3 10 prds0g φ0𝑔R=0Y
12 1 2 3 10 prdsmndd φYMnd
13 eqid BaseY=BaseY
14 eqid +Y=+Y
15 3 elexd φSV
16 15 adantr φaBaseYSV
17 2 elexd φIV
18 17 adantr φaBaseYIV
19 4 adantr φaBaseYR:IGrp
20 simpr φaBaseYaBaseY
21 eqid 0𝑔R=0𝑔R
22 eqid bIinvgRbab=bIinvgRbab
23 1 13 14 16 18 19 20 21 22 prdsinvlem φaBaseYbIinvgRbabBaseYbIinvgRbab+Ya=0𝑔R
24 23 simpld φaBaseYbIinvgRbabBaseY
25 23 simprd φaBaseYbIinvgRbab+Ya=0𝑔R
26 5 6 11 12 24 25 isgrpd2 φYGrp