Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdsgrpd.y | |
|
prdsgrpd.i | |
||
prdsgrpd.s | |
||
prdsgrpd.r | |
||
Assertion | prdsgrpd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsgrpd.y | |
|
2 | prdsgrpd.i | |
|
3 | prdsgrpd.s | |
|
4 | prdsgrpd.r | |
|
5 | eqidd | |
|
6 | eqidd | |
|
7 | grpmnd | |
|
8 | 7 | ssriv | |
9 | fss | |
|
10 | 4 8 9 | sylancl | |
11 | 1 2 3 10 | prds0g | |
12 | 1 2 3 10 | prdsmndd | |
13 | eqid | |
|
14 | eqid | |
|
15 | 3 | elexd | |
16 | 15 | adantr | |
17 | 2 | elexd | |
18 | 17 | adantr | |
19 | 4 | adantr | |
20 | simpr | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 1 13 14 16 18 19 20 21 22 | prdsinvlem | |
24 | 23 | simpld | |
25 | 23 | simprd | |
26 | 5 6 11 12 24 25 | isgrpd2 | |