| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsgrpd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdsgrpd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 3 |
|
prdsgrpd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
prdsgrpd.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) |
| 7 |
|
grpmnd |
⊢ ( 𝑎 ∈ Grp → 𝑎 ∈ Mnd ) |
| 8 |
7
|
ssriv |
⊢ Grp ⊆ Mnd |
| 9 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ Grp ∧ Grp ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 10 |
4 8 9
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 11 |
1 2 3 10
|
prds0g |
⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 0g ‘ 𝑌 ) ) |
| 12 |
1 2 3 10
|
prdsmndd |
⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 15 |
3
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ V ) |
| 17 |
2
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 : 𝐼 ⟶ Grp ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
| 21 |
|
eqid |
⊢ ( 0g ∘ 𝑅 ) = ( 0g ∘ 𝑅 ) |
| 22 |
|
eqid |
⊢ ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) = ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) |
| 23 |
1 13 14 16 18 19 20 21 22
|
prdsinvlem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ( +g ‘ 𝑌 ) 𝑎 ) = ( 0g ∘ 𝑅 ) ) ) |
| 24 |
23
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 25 |
23
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ( +g ‘ 𝑌 ) 𝑎 ) = ( 0g ∘ 𝑅 ) ) |
| 26 |
5 6 11 12 24 25
|
isgrpd2 |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |