Metamath Proof Explorer


Theorem prdsinvlem

Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses prdsinvlem.y Y=S𝑠R
prdsinvlem.b B=BaseY
prdsinvlem.p +˙=+Y
prdsinvlem.s φSV
prdsinvlem.i φIW
prdsinvlem.r φR:IGrp
prdsinvlem.f φFB
prdsinvlem.z 0˙=0𝑔R
prdsinvlem.n N=yIinvgRyFy
Assertion prdsinvlem φNBN+˙F=0˙

Proof

Step Hyp Ref Expression
1 prdsinvlem.y Y=S𝑠R
2 prdsinvlem.b B=BaseY
3 prdsinvlem.p +˙=+Y
4 prdsinvlem.s φSV
5 prdsinvlem.i φIW
6 prdsinvlem.r φR:IGrp
7 prdsinvlem.f φFB
8 prdsinvlem.z 0˙=0𝑔R
9 prdsinvlem.n N=yIinvgRyFy
10 6 ffvelcdmda φyIRyGrp
11 4 adantr φyISV
12 5 adantr φyIIW
13 6 ffnd φRFnI
14 13 adantr φyIRFnI
15 7 adantr φyIFB
16 simpr φyIyI
17 1 2 11 12 14 15 16 prdsbasprj φyIFyBaseRy
18 eqid BaseRy=BaseRy
19 eqid invgRy=invgRy
20 18 19 grpinvcl RyGrpFyBaseRyinvgRyFyBaseRy
21 10 17 20 syl2anc φyIinvgRyFyBaseRy
22 21 ralrimiva φyIinvgRyFyBaseRy
23 1 2 4 5 13 prdsbasmpt φyIinvgRyFyByIinvgRyFyBaseRy
24 22 23 mpbird φyIinvgRyFyB
25 9 24 eqeltrid φNB
26 6 ffvelcdmda φxIRxGrp
27 4 adantr φxISV
28 5 adantr φxIIW
29 13 adantr φxIRFnI
30 7 adantr φxIFB
31 simpr φxIxI
32 1 2 27 28 29 30 31 prdsbasprj φxIFxBaseRx
33 eqid BaseRx=BaseRx
34 eqid +Rx=+Rx
35 eqid 0Rx=0Rx
36 eqid invgRx=invgRx
37 33 34 35 36 grplinv RxGrpFxBaseRxinvgRxFx+RxFx=0Rx
38 26 32 37 syl2anc φxIinvgRxFx+RxFx=0Rx
39 2fveq3 y=xinvgRy=invgRx
40 fveq2 y=xFy=Fx
41 39 40 fveq12d y=xinvgRyFy=invgRxFx
42 fvex invgRxFxV
43 41 9 42 fvmpt xINx=invgRxFx
44 43 adantl φxINx=invgRxFx
45 44 oveq1d φxINx+RxFx=invgRxFx+RxFx
46 8 fveq1i 0˙x=0𝑔Rx
47 fvco2 RFnIxI0𝑔Rx=0Rx
48 13 47 sylan φxI0𝑔Rx=0Rx
49 46 48 eqtrid φxI0˙x=0Rx
50 38 45 49 3eqtr4d φxINx+RxFx=0˙x
51 50 mpteq2dva φxINx+RxFx=xI0˙x
52 1 2 4 5 13 25 7 3 prdsplusgval φN+˙F=xINx+RxFx
53 fn0g 0𝑔FnV
54 ssv ranRV
55 54 a1i φranRV
56 fnco 0𝑔FnVRFnIranRV0𝑔RFnI
57 53 13 55 56 mp3an2i φ0𝑔RFnI
58 8 fneq1i 0˙FnI0𝑔RFnI
59 57 58 sylibr φ0˙FnI
60 dffn5 0˙FnI0˙=xI0˙x
61 59 60 sylib φ0˙=xI0˙x
62 51 52 61 3eqtr4d φN+˙F=0˙
63 25 62 jca φNBN+˙F=0˙