Metamath Proof Explorer


Theorem prdsplusgval

Description: Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsbasmpt.s φSV
prdsbasmpt.i φIW
prdsbasmpt.r φRFnI
prdsplusgval.f φFB
prdsplusgval.g φGB
prdsplusgval.p +˙=+Y
Assertion prdsplusgval φF+˙G=xIFx+RxGx

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsbasmpt.s φSV
4 prdsbasmpt.i φIW
5 prdsbasmpt.r φRFnI
6 prdsplusgval.f φFB
7 prdsplusgval.g φGB
8 prdsplusgval.p +˙=+Y
9 fnex RFnIIWRV
10 5 4 9 syl2anc φRV
11 5 fndmd φdomR=I
12 1 3 10 2 11 8 prdsplusg φ+˙=yB,zBxIyx+Rxzx
13 fveq1 y=Fyx=Fx
14 fveq1 z=Gzx=Gx
15 13 14 oveqan12d y=Fz=Gyx+Rxzx=Fx+RxGx
16 15 adantl φy=Fz=Gyx+Rxzx=Fx+RxGx
17 16 mpteq2dv φy=Fz=GxIyx+Rxzx=xIFx+RxGx
18 4 mptexd φxIFx+RxGxV
19 12 17 6 7 18 ovmpod φF+˙G=xIFx+RxGx