Metamath Proof Explorer


Theorem prdsmndd

Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsmndd.y Y=S𝑠R
prdsmndd.i φIW
prdsmndd.s φSV
prdsmndd.r φR:IMnd
Assertion prdsmndd φYMnd

Proof

Step Hyp Ref Expression
1 prdsmndd.y Y=S𝑠R
2 prdsmndd.i φIW
3 prdsmndd.s φSV
4 prdsmndd.r φR:IMnd
5 eqidd φBaseY=BaseY
6 eqidd φ+Y=+Y
7 eqid BaseY=BaseY
8 eqid +Y=+Y
9 3 elexd φSV
10 9 adantr φaBaseYbBaseYSV
11 2 elexd φIV
12 11 adantr φaBaseYbBaseYIV
13 4 adantr φaBaseYbBaseYR:IMnd
14 simprl φaBaseYbBaseYaBaseY
15 simprr φaBaseYbBaseYbBaseY
16 1 7 8 10 12 13 14 15 prdsplusgcl φaBaseYbBaseYa+YbBaseY
17 16 3impb φaBaseYbBaseYa+YbBaseY
18 4 ffvelcdmda φyIRyMnd
19 18 adantlr φaBaseYbBaseYcBaseYyIRyMnd
20 9 ad2antrr φaBaseYbBaseYcBaseYyISV
21 11 ad2antrr φaBaseYbBaseYcBaseYyIIV
22 4 ffnd φRFnI
23 22 ad2antrr φaBaseYbBaseYcBaseYyIRFnI
24 simplr1 φaBaseYbBaseYcBaseYyIaBaseY
25 simpr φaBaseYbBaseYcBaseYyIyI
26 1 7 20 21 23 24 25 prdsbasprj φaBaseYbBaseYcBaseYyIayBaseRy
27 simplr2 φaBaseYbBaseYcBaseYyIbBaseY
28 1 7 20 21 23 27 25 prdsbasprj φaBaseYbBaseYcBaseYyIbyBaseRy
29 simplr3 φaBaseYbBaseYcBaseYyIcBaseY
30 1 7 20 21 23 29 25 prdsbasprj φaBaseYbBaseYcBaseYyIcyBaseRy
31 eqid BaseRy=BaseRy
32 eqid +Ry=+Ry
33 31 32 mndass RyMndayBaseRybyBaseRycyBaseRyay+Ryby+Rycy=ay+Ryby+Rycy
34 19 26 28 30 33 syl13anc φaBaseYbBaseYcBaseYyIay+Ryby+Rycy=ay+Ryby+Rycy
35 1 7 20 21 23 24 27 8 25 prdsplusgfval φaBaseYbBaseYcBaseYyIa+Yby=ay+Ryby
36 35 oveq1d φaBaseYbBaseYcBaseYyIa+Yby+Rycy=ay+Ryby+Rycy
37 1 7 20 21 23 27 29 8 25 prdsplusgfval φaBaseYbBaseYcBaseYyIb+Ycy=by+Rycy
38 37 oveq2d φaBaseYbBaseYcBaseYyIay+Ryb+Ycy=ay+Ryby+Rycy
39 34 36 38 3eqtr4d φaBaseYbBaseYcBaseYyIa+Yby+Rycy=ay+Ryb+Ycy
40 39 mpteq2dva φaBaseYbBaseYcBaseYyIa+Yby+Rycy=yIay+Ryb+Ycy
41 9 adantr φaBaseYbBaseYcBaseYSV
42 11 adantr φaBaseYbBaseYcBaseYIV
43 22 adantr φaBaseYbBaseYcBaseYRFnI
44 16 3adantr3 φaBaseYbBaseYcBaseYa+YbBaseY
45 simpr3 φaBaseYbBaseYcBaseYcBaseY
46 1 7 41 42 43 44 45 8 prdsplusgval φaBaseYbBaseYcBaseYa+Yb+Yc=yIa+Yby+Rycy
47 simpr1 φaBaseYbBaseYcBaseYaBaseY
48 4 adantr φaBaseYbBaseYcBaseYR:IMnd
49 simpr2 φaBaseYbBaseYcBaseYbBaseY
50 1 7 8 41 42 48 49 45 prdsplusgcl φaBaseYbBaseYcBaseYb+YcBaseY
51 1 7 41 42 43 47 50 8 prdsplusgval φaBaseYbBaseYcBaseYa+Yb+Yc=yIay+Ryb+Ycy
52 40 46 51 3eqtr4d φaBaseYbBaseYcBaseYa+Yb+Yc=a+Yb+Yc
53 eqid 0𝑔R=0𝑔R
54 1 7 8 9 11 4 53 prdsidlem φ0𝑔RBaseYaBaseY0𝑔R+Ya=aa+Y0𝑔R=a
55 54 simpld φ0𝑔RBaseY
56 54 simprd φaBaseY0𝑔R+Ya=aa+Y0𝑔R=a
57 56 r19.21bi φaBaseY0𝑔R+Ya=aa+Y0𝑔R=a
58 57 simpld φaBaseY0𝑔R+Ya=a
59 57 simprd φaBaseYa+Y0𝑔R=a
60 5 6 17 52 55 58 59 ismndd φYMnd