Metamath Proof Explorer


Theorem prds0g

Description: Zero in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsmndd.y Y=S𝑠R
prdsmndd.i φIW
prdsmndd.s φSV
prdsmndd.r φR:IMnd
Assertion prds0g φ0𝑔R=0Y

Proof

Step Hyp Ref Expression
1 prdsmndd.y Y=S𝑠R
2 prdsmndd.i φIW
3 prdsmndd.s φSV
4 prdsmndd.r φR:IMnd
5 eqid BaseY=BaseY
6 eqid +Y=+Y
7 3 elexd φSV
8 2 elexd φIV
9 eqid 0𝑔R=0𝑔R
10 1 5 6 7 8 4 9 prdsidlem φ0𝑔RBaseYbBaseY0𝑔R+Yb=bb+Y0𝑔R=b
11 eqid 0Y=0Y
12 1 2 3 4 prdsmndd φYMnd
13 5 6 mndid YMndaBaseYbBaseYa+Yb=bb+Ya=b
14 12 13 syl φaBaseYbBaseYa+Yb=bb+Ya=b
15 5 11 6 14 ismgmid φ0𝑔RBaseYbBaseY0𝑔R+Yb=bb+Y0𝑔R=b0Y=0𝑔R
16 10 15 mpbid φ0Y=0𝑔R
17 16 eqcomd φ0𝑔R=0Y