Metamath Proof Explorer


Theorem prdsip

Description: Inner product in a structure product. (Contributed by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
prdsip.m , ˙ = 𝑖 P
Assertion prdsip φ , ˙ = f B , g B S x I f x 𝑖 R x g x

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 prdsip.m , ˙ = 𝑖 P
7 eqid Base S = Base S
8 1 2 3 4 5 prdsbas φ B = x I Base R x
9 eqid + P = + P
10 1 2 3 4 5 9 prdsplusg φ + P = f B , g B x I f x + R x g x
11 eqidd φ f B , g B x I f x R x g x = f B , g B x I f x R x g x
12 eqidd φ f Base S , g B x I f R x g x = f Base S , g B x I f R x g x
13 eqidd φ f B , g B S x I f x 𝑖 R x g x = f B , g B S x I f x 𝑖 R x g x
14 eqidd φ 𝑡 TopOpen R = 𝑡 TopOpen R
15 eqidd φ f g | f g B x I f x R x g x = f g | f g B x I f x R x g x
16 eqidd φ f B , g B sup ran x I f x dist R x g x 0 * < = f B , g B sup ran x I f x dist R x g x 0 * <
17 eqidd φ f B , g B x I f x Hom R x g x = f B , g B x I f x Hom R x g x
18 eqidd φ a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x = a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
19 1 7 5 8 10 11 12 13 14 15 16 17 18 2 3 prdsval φ P = Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
20 ipid 𝑖 = Slot 𝑖 ndx
21 4 fvexi B V
22 21 a1i φ B V
23 mpoexga B V B V f B , g B S x I f x 𝑖 R x g x V
24 22 21 23 sylancl φ f B , g B S x I f x 𝑖 R x g x V
25 snsstp3 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
26 ssun2 Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
27 25 26 sstri 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
28 ssun1 Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
29 27 28 sstri 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
30 19 6 20 24 29 prdsvallem φ , ˙ = f B , g B S x I f x 𝑖 R x g x