Metamath Proof Explorer


Theorem prdsle

Description: Structure product weak ordering. (Contributed by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P=S𝑠R
prdsbas.s φSV
prdsbas.r φRW
prdsbas.b B=BaseP
prdsbas.i φdomR=I
prdsle.l ˙=P
Assertion prdsle φ˙=fg|fgBxIfxRxgx

Proof

Step Hyp Ref Expression
1 prdsbas.p P=S𝑠R
2 prdsbas.s φSV
3 prdsbas.r φRW
4 prdsbas.b B=BaseP
5 prdsbas.i φdomR=I
6 prdsle.l ˙=P
7 eqid BaseS=BaseS
8 1 2 3 4 5 prdsbas φB=xIBaseRx
9 eqid +P=+P
10 1 2 3 4 5 9 prdsplusg φ+P=fB,gBxIfx+Rxgx
11 eqid P=P
12 1 2 3 4 5 11 prdsmulr φP=fB,gBxIfxRxgx
13 eqid P=P
14 1 2 3 4 5 7 13 prdsvsca φP=fBaseS,gBxIfRxgx
15 eqidd φfB,gBSxIfx𝑖Rxgx=fB,gBSxIfx𝑖Rxgx
16 eqidd φ𝑡TopOpenR=𝑡TopOpenR
17 eqidd φfg|fgBxIfxRxgx=fg|fgBxIfxRxgx
18 eqidd φfB,gBsupranxIfxdistRxgx0*<=fB,gBsupranxIfxdistRxgx0*<
19 eqidd φfB,gBxIfxHomRxgx=fB,gBxIfxHomRxgx
20 eqidd φaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex=aB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
21 1 7 5 8 10 12 14 15 16 17 18 19 20 2 3 prdsval φP=BasendxB+ndx+PndxPScalarndxSndxP𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
22 pleid le=Slotndx
23 4 fvexi BV
24 23 23 xpex B×BV
25 vex fV
26 vex gV
27 25 26 prss fBgBfgB
28 27 anbi1i fBgBxIfxRxgxfgBxIfxRxgx
29 28 opabbii fg|fBgBxIfxRxgx=fg|fgBxIfxRxgx
30 opabssxp fg|fBgBxIfxRxgxB×B
31 29 30 eqsstrri fg|fgBxIfxRxgxB×B
32 24 31 ssexi fg|fgBxIfxRxgxV
33 32 a1i φfg|fgBxIfxRxgxV
34 snsstp2 ndxfg|fgBxIfxRxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<
35 ssun1 TopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<TopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
36 34 35 sstri ndxfg|fgBxIfxRxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
37 ssun2 TopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxexBasendxB+ndx+PndxPScalarndxSndxP𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
38 36 37 sstri ndxfg|fgBxIfxRxgxBasendxB+ndx+PndxPScalarndxSndxP𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
39 21 6 22 33 38 prdsbaslem φ˙=fg|fgBxIfxRxgx