Metamath Proof Explorer


Theorem prdsvsca

Description: Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
prdsvsca.k K = Base S
prdsvsca.m · ˙ = P
Assertion prdsvsca φ · ˙ = f K , g B x I f R x g x

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 prdsvsca.k K = Base S
7 prdsvsca.m · ˙ = P
8 1 2 3 4 5 prdsbas φ B = x I Base R x
9 eqid + P = + P
10 1 2 3 4 5 9 prdsplusg φ + P = f B , g B x I f x + R x g x
11 eqid P = P
12 1 2 3 4 5 11 prdsmulr φ P = f B , g B x I f x R x g x
13 eqidd φ f K , g B x I f R x g x = f K , g B x I f R x g x
14 eqidd φ f B , g B S x I f x 𝑖 R x g x = f B , g B S x I f x 𝑖 R x g x
15 eqidd φ 𝑡 TopOpen R = 𝑡 TopOpen R
16 eqidd φ f g | f g B x I f x R x g x = f g | f g B x I f x R x g x
17 eqidd φ f B , g B sup ran x I f x dist R x g x 0 * < = f B , g B sup ran x I f x dist R x g x 0 * <
18 eqidd φ f B , g B x I f x Hom R x g x = f B , g B x I f x Hom R x g x
19 eqidd φ a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x = a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
20 1 6 5 8 10 12 13 14 15 16 17 18 19 2 3 prdsval φ P = Base ndx B + ndx + P ndx P Scalar ndx S ndx f K , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
21 vscaid 𝑠 = Slot ndx
22 ovssunirn f R x g x ran R x
23 21 strfvss R x ran R x
24 fvssunirn R x ran R
25 rnss R x ran R ran R x ran ran R
26 uniss ran R x ran ran R ran R x ran ran R
27 24 25 26 mp2b ran R x ran ran R
28 23 27 sstri R x ran ran R
29 rnss R x ran ran R ran R x ran ran ran R
30 uniss ran R x ran ran ran R ran R x ran ran ran R
31 28 29 30 mp2b ran R x ran ran ran R
32 22 31 sstri f R x g x ran ran ran R
33 ovex f R x g x V
34 33 elpw f R x g x 𝒫 ran ran ran R f R x g x ran ran ran R
35 32 34 mpbir f R x g x 𝒫 ran ran ran R
36 35 a1i φ x I f R x g x 𝒫 ran ran ran R
37 36 fmpttd φ x I f R x g x : I 𝒫 ran ran ran R
38 rnexg R W ran R V
39 uniexg ran R V ran R V
40 3 38 39 3syl φ ran R V
41 rnexg ran R V ran ran R V
42 uniexg ran ran R V ran ran R V
43 40 41 42 3syl φ ran ran R V
44 rnexg ran ran R V ran ran ran R V
45 uniexg ran ran ran R V ran ran ran R V
46 pwexg ran ran ran R V 𝒫 ran ran ran R V
47 43 44 45 46 4syl φ 𝒫 ran ran ran R V
48 3 dmexd φ dom R V
49 5 48 eqeltrrd φ I V
50 47 49 elmapd φ x I f R x g x 𝒫 ran ran ran R I x I f R x g x : I 𝒫 ran ran ran R
51 37 50 mpbird φ x I f R x g x 𝒫 ran ran ran R I
52 51 ralrimivw φ g B x I f R x g x 𝒫 ran ran ran R I
53 52 ralrimivw φ f K g B x I f R x g x 𝒫 ran ran ran R I
54 eqid f K , g B x I f R x g x = f K , g B x I f R x g x
55 54 fmpo f K g B x I f R x g x 𝒫 ran ran ran R I f K , g B x I f R x g x : K × B 𝒫 ran ran ran R I
56 53 55 sylib φ f K , g B x I f R x g x : K × B 𝒫 ran ran ran R I
57 6 fvexi K V
58 4 fvexi B V
59 57 58 xpex K × B V
60 ovex 𝒫 ran ran ran R I V
61 fex2 f K , g B x I f R x g x : K × B 𝒫 ran ran ran R I K × B V 𝒫 ran ran ran R I V f K , g B x I f R x g x V
62 59 60 61 mp3an23 f K , g B x I f R x g x : K × B 𝒫 ran ran ran R I f K , g B x I f R x g x V
63 56 62 syl φ f K , g B x I f R x g x V
64 snsstp2 ndx f K , g B x I f R x g x Scalar ndx S ndx f K , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
65 ssun2 Scalar ndx S ndx f K , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Base ndx B + ndx + P ndx P Scalar ndx S ndx f K , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
66 64 65 sstri ndx f K , g B x I f R x g x Base ndx B + ndx + P ndx P Scalar ndx S ndx f K , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
67 ssun1 Base ndx B + ndx + P ndx P Scalar ndx S ndx f K , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Base ndx B + ndx + P ndx P Scalar ndx S ndx f K , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
68 66 67 sstri ndx f K , g B x I f R x g x Base ndx B + ndx + P ndx P Scalar ndx S ndx f K , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
69 20 7 21 63 68 prdsvallem φ · ˙ = f K , g B x I f R x g x