Metamath Proof Explorer


Theorem prdsip

Description: Inner product in a structure product. (Contributed by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P=S𝑠R
prdsbas.s φSV
prdsbas.r φRW
prdsbas.b B=BaseP
prdsbas.i φdomR=I
prdsip.m ,˙=𝑖P
Assertion prdsip φ,˙=fB,gBSxIfx𝑖Rxgx

Proof

Step Hyp Ref Expression
1 prdsbas.p P=S𝑠R
2 prdsbas.s φSV
3 prdsbas.r φRW
4 prdsbas.b B=BaseP
5 prdsbas.i φdomR=I
6 prdsip.m ,˙=𝑖P
7 eqid BaseS=BaseS
8 1 2 3 4 5 prdsbas φB=xIBaseRx
9 eqid +P=+P
10 1 2 3 4 5 9 prdsplusg φ+P=fB,gBxIfx+Rxgx
11 eqidd φfB,gBxIfxRxgx=fB,gBxIfxRxgx
12 eqidd φfBaseS,gBxIfRxgx=fBaseS,gBxIfRxgx
13 eqidd φfB,gBSxIfx𝑖Rxgx=fB,gBSxIfx𝑖Rxgx
14 eqidd φ𝑡TopOpenR=𝑡TopOpenR
15 eqidd φfg|fgBxIfxRxgx=fg|fgBxIfxRxgx
16 eqidd φfB,gBsupranxIfxdistRxgx0*<=fB,gBsupranxIfxdistRxgx0*<
17 eqidd φfB,gBxIfxHomRxgx=fB,gBxIfxHomRxgx
18 eqidd φaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex=aB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
19 1 7 5 8 10 11 12 13 14 15 16 17 18 2 3 prdsval φP=BasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
20 ipid 𝑖=Slot𝑖ndx
21 4 fvexi BV
22 21 a1i φBV
23 mpoexga BVBVfB,gBSxIfx𝑖RxgxV
24 22 21 23 sylancl φfB,gBSxIfx𝑖RxgxV
25 snsstp3 𝑖ndxfB,gBSxIfx𝑖RxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
26 ssun2 ScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxBasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
27 25 26 sstri 𝑖ndxfB,gBSxIfx𝑖RxgxBasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
28 ssun1 BasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxBasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
29 27 28 sstri 𝑖ndxfB,gBSxIfx𝑖RxgxBasendxB+ndx+PndxfB,gBxIfxRxgxScalarndxSndxfBaseS,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
30 19 6 20 24 29 prdsbaslem φ,˙=fB,gBSxIfx𝑖Rxgx