Metamath Proof Explorer


Theorem prdsip

Description: Inner product in a structure product. (Contributed by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p
|- P = ( S Xs_ R )
prdsbas.s
|- ( ph -> S e. V )
prdsbas.r
|- ( ph -> R e. W )
prdsbas.b
|- B = ( Base ` P )
prdsbas.i
|- ( ph -> dom R = I )
prdsip.m
|- ., = ( .i ` P )
Assertion prdsip
|- ( ph -> ., = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 prdsbas.p
 |-  P = ( S Xs_ R )
2 prdsbas.s
 |-  ( ph -> S e. V )
3 prdsbas.r
 |-  ( ph -> R e. W )
4 prdsbas.b
 |-  B = ( Base ` P )
5 prdsbas.i
 |-  ( ph -> dom R = I )
6 prdsip.m
 |-  ., = ( .i ` P )
7 eqid
 |-  ( Base ` S ) = ( Base ` S )
8 1 2 3 4 5 prdsbas
 |-  ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) )
9 eqid
 |-  ( +g ` P ) = ( +g ` P )
10 1 2 3 4 5 9 prdsplusg
 |-  ( ph -> ( +g ` P ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) )
11 eqidd
 |-  ( ph -> ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) )
12 eqidd
 |-  ( ph -> ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) = ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) )
13 eqidd
 |-  ( ph -> ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) )
14 eqidd
 |-  ( ph -> ( Xt_ ` ( TopOpen o. R ) ) = ( Xt_ ` ( TopOpen o. R ) ) )
15 eqidd
 |-  ( ph -> { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } )
16 eqidd
 |-  ( ph -> ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) )
17 eqidd
 |-  ( ph -> ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) )
18 eqidd
 |-  ( ph -> ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) c ) , e e. ( ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) c ) , e e. ( ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) )
19 1 7 5 8 10 11 12 13 14 15 16 17 18 2 3 prdsval
 |-  ( ph -> P = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. R ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) c ) , e e. ( ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) )
20 ipid
 |-  .i = Slot ( .i ` ndx )
21 4 fvexi
 |-  B e. _V
22 21 a1i
 |-  ( ph -> B e. _V )
23 mpoexga
 |-  ( ( B e. _V /\ B e. _V ) -> ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) e. _V )
24 22 21 23 sylancl
 |-  ( ph -> ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) e. _V )
25 snsstp3
 |-  { <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } C_ { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. }
26 ssun2
 |-  { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } )
27 25 26 sstri
 |-  { <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } )
28 ssun1
 |-  ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. R ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) c ) , e e. ( ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) )
29 27 28 sstri
 |-  { <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. R ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) c ) , e e. ( ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) )
30 19 6 20 24 29 prdsbaslem
 |-  ( ph -> ., = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) )