Metamath Proof Explorer


Theorem prdsip

Description: Inner product in a structure product. (Contributed by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
prdsbas.s ( 𝜑𝑆𝑉 )
prdsbas.r ( 𝜑𝑅𝑊 )
prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
prdsip.m , = ( ·𝑖𝑃 )
Assertion prdsip ( 𝜑, = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
2 prdsbas.s ( 𝜑𝑆𝑉 )
3 prdsbas.r ( 𝜑𝑅𝑊 )
4 prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
5 prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
6 prdsip.m , = ( ·𝑖𝑃 )
7 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
8 1 2 3 4 5 prdsbas ( 𝜑𝐵 = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )
9 eqid ( +g𝑃 ) = ( +g𝑃 )
10 1 2 3 4 5 9 prdsplusg ( 𝜑 → ( +g𝑃 ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
11 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
12 eqidd ( 𝜑 → ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
13 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) )
14 eqidd ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )
15 eqidd ( 𝜑 → { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } )
16 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) )
17 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) = ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) )
18 eqidd ( 𝜑 → ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) )
19 1 7 5 8 10 11 12 13 14 15 16 17 18 2 3 prdsval ( 𝜑𝑃 = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) ) )
20 ipid ·𝑖 = Slot ( ·𝑖 ‘ ndx )
21 4 fvexi 𝐵 ∈ V
22 21 a1i ( 𝜑𝐵 ∈ V )
23 mpoexga ( ( 𝐵 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ∈ V )
24 22 21 23 sylancl ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ∈ V )
25 snsstp3 { ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ⊆ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ }
26 ssun2 { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } )
27 25 26 sstri { ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } )
28 ssun1 ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) )
29 27 28 sstri { ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) )
30 19 6 20 24 29 prdsbaslem ( 𝜑, = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) )