Metamath Proof Explorer


Theorem prdsmulrcl

Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015) (Proof shortened by AV, 30-Mar-2025)

Ref Expression
Hypotheses prdsmulrcl.y Y=S𝑠R
prdsmulrcl.b B=BaseY
prdsmulrcl.t ·˙=Y
prdsmulrcl.s φSV
prdsmulrcl.i φIW
prdsmulrcl.r φR:IRing
prdsmulrcl.f φFB
prdsmulrcl.g φGB
Assertion prdsmulrcl φF·˙GB

Proof

Step Hyp Ref Expression
1 prdsmulrcl.y Y=S𝑠R
2 prdsmulrcl.b B=BaseY
3 prdsmulrcl.t ·˙=Y
4 prdsmulrcl.s φSV
5 prdsmulrcl.i φIW
6 prdsmulrcl.r φR:IRing
7 prdsmulrcl.f φFB
8 prdsmulrcl.g φGB
9 ringssrng RingRng
10 fss R:IRingRingRngR:IRng
11 6 9 10 sylancl φR:IRng
12 1 2 3 4 5 11 7 8 prdsmulrngcl φF·˙GB