Metamath Proof Explorer


Theorem prdsplusgfval

Description: Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsbasmpt.s φSV
prdsbasmpt.i φIW
prdsbasmpt.r φRFnI
prdsplusgval.f φFB
prdsplusgval.g φGB
prdsplusgval.p +˙=+Y
prdsplusgfval.j φJI
Assertion prdsplusgfval φF+˙GJ=FJ+RJGJ

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsbasmpt.s φSV
4 prdsbasmpt.i φIW
5 prdsbasmpt.r φRFnI
6 prdsplusgval.f φFB
7 prdsplusgval.g φGB
8 prdsplusgval.p +˙=+Y
9 prdsplusgfval.j φJI
10 1 2 3 4 5 6 7 8 prdsplusgval φF+˙G=xIFx+RxGx
11 10 fveq1d φF+˙GJ=xIFx+RxGxJ
12 2fveq3 x=J+Rx=+RJ
13 fveq2 x=JFx=FJ
14 fveq2 x=JGx=GJ
15 12 13 14 oveq123d x=JFx+RxGx=FJ+RJGJ
16 eqid xIFx+RxGx=xIFx+RxGx
17 ovex FJ+RJGJV
18 15 16 17 fvmpt JIxIFx+RxGxJ=FJ+RJGJ
19 9 18 syl φxIFx+RxGxJ=FJ+RJGJ
20 11 19 eqtrd φF+˙GJ=FJ+RJGJ