| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbasmpt.y |
|- Y = ( S Xs_ R ) |
| 2 |
|
prdsbasmpt.b |
|- B = ( Base ` Y ) |
| 3 |
|
prdsbasmpt.s |
|- ( ph -> S e. V ) |
| 4 |
|
prdsbasmpt.i |
|- ( ph -> I e. W ) |
| 5 |
|
prdsbasmpt.r |
|- ( ph -> R Fn I ) |
| 6 |
|
prdsplusgval.f |
|- ( ph -> F e. B ) |
| 7 |
|
prdsplusgval.g |
|- ( ph -> G e. B ) |
| 8 |
|
prdsplusgval.p |
|- .+ = ( +g ` Y ) |
| 9 |
|
prdsplusgfval.j |
|- ( ph -> J e. I ) |
| 10 |
1 2 3 4 5 6 7 8
|
prdsplusgval |
|- ( ph -> ( F .+ G ) = ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 11 |
10
|
fveq1d |
|- ( ph -> ( ( F .+ G ) ` J ) = ( ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) ` J ) ) |
| 12 |
|
2fveq3 |
|- ( x = J -> ( +g ` ( R ` x ) ) = ( +g ` ( R ` J ) ) ) |
| 13 |
|
fveq2 |
|- ( x = J -> ( F ` x ) = ( F ` J ) ) |
| 14 |
|
fveq2 |
|- ( x = J -> ( G ` x ) = ( G ` J ) ) |
| 15 |
12 13 14
|
oveq123d |
|- ( x = J -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) = ( ( F ` J ) ( +g ` ( R ` J ) ) ( G ` J ) ) ) |
| 16 |
|
eqid |
|- ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) |
| 17 |
|
ovex |
|- ( ( F ` J ) ( +g ` ( R ` J ) ) ( G ` J ) ) e. _V |
| 18 |
15 16 17
|
fvmpt |
|- ( J e. I -> ( ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) ` J ) = ( ( F ` J ) ( +g ` ( R ` J ) ) ( G ` J ) ) ) |
| 19 |
9 18
|
syl |
|- ( ph -> ( ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) ` J ) = ( ( F ` J ) ( +g ` ( R ` J ) ) ( G ` J ) ) ) |
| 20 |
11 19
|
eqtrd |
|- ( ph -> ( ( F .+ G ) ` J ) = ( ( F ` J ) ( +g ` ( R ` J ) ) ( G ` J ) ) ) |