Metamath Proof Explorer


Theorem prdsxmet

Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem . (Contributed by Mario Carneiro, 26-Sep-2015)

Ref Expression
Hypotheses prdsdsf.y ⊒Y=S⨉𝑠x∈I⟼R
prdsdsf.b ⊒B=BaseY
prdsdsf.v ⊒V=BaseR
prdsdsf.e ⊒E=dist⁑Rβ†ΎVΓ—V
prdsdsf.d ⊒D=dist⁑Y
prdsdsf.s βŠ’Ο†β†’S∈W
prdsdsf.i βŠ’Ο†β†’I∈X
prdsdsf.r βŠ’Ο†βˆ§x∈Iβ†’R∈Z
prdsdsf.m βŠ’Ο†βˆ§x∈Iβ†’E∈∞Met⁑V
Assertion prdsxmet βŠ’Ο†β†’D∈∞Met⁑B

Proof

Step Hyp Ref Expression
1 prdsdsf.y ⊒Y=S⨉𝑠x∈I⟼R
2 prdsdsf.b ⊒B=BaseY
3 prdsdsf.v ⊒V=BaseR
4 prdsdsf.e ⊒E=dist⁑Rβ†ΎVΓ—V
5 prdsdsf.d ⊒D=dist⁑Y
6 prdsdsf.s βŠ’Ο†β†’S∈W
7 prdsdsf.i βŠ’Ο†β†’I∈X
8 prdsdsf.r βŠ’Ο†βˆ§x∈Iβ†’R∈Z
9 prdsdsf.m βŠ’Ο†βˆ§x∈Iβ†’E∈∞Met⁑V
10 nfcv βŠ’β„²_yR
11 nfcsb1v βŠ’β„²_x⦋y/x⦌R
12 csbeq1a ⊒x=yβ†’R=⦋y/x⦌R
13 10 11 12 cbvmpt ⊒x∈I⟼R=y∈IβŸΌβ¦‹y/x⦌R
14 13 oveq2i ⊒S⨉𝑠x∈I⟼R=S⨉𝑠y∈IβŸΌβ¦‹y/x⦌R
15 1 14 eqtri ⊒Y=S⨉𝑠y∈IβŸΌβ¦‹y/x⦌R
16 eqid ⊒Base⦋y/x⦌R=Base⦋y/x⦌R
17 eqid ⊒dist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R=dist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R
18 8 elexd βŠ’Ο†βˆ§x∈Iβ†’R∈V
19 18 ralrimiva βŠ’Ο†β†’βˆ€x∈IR∈V
20 11 nfel1 βŠ’β„²x⦋y/x⦌R∈V
21 12 eleq1d ⊒x=yβ†’R∈V↔⦋y/x⦌R∈V
22 20 21 rspc ⊒y∈Iβ†’βˆ€x∈IR∈V→⦋y/x⦌R∈V
23 19 22 mpan9 βŠ’Ο†βˆ§y∈I→⦋y/x⦌R∈V
24 9 ralrimiva βŠ’Ο†β†’βˆ€x∈IE∈∞Met⁑V
25 nfcv βŠ’β„²_xdist
26 25 11 nffv βŠ’β„²_xdist⁑⦋y/x⦌R
27 nfcv βŠ’β„²_xBase
28 27 11 nffv βŠ’β„²_xBase⦋y/x⦌R
29 28 28 nfxp βŠ’β„²_xBase⦋y/x⦌RΓ—Base⦋y/x⦌R
30 26 29 nfres βŠ’β„²_xdist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R
31 nfcv βŠ’β„²_x∞Met
32 31 28 nffv βŠ’β„²_x∞Met⁑Base⦋y/x⦌R
33 30 32 nfel βŠ’β„²xdist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R∈∞Met⁑Base⦋y/x⦌R
34 12 fveq2d ⊒x=yβ†’dist⁑R=dist⁑⦋y/x⦌R
35 12 fveq2d ⊒x=yβ†’BaseR=Base⦋y/x⦌R
36 3 35 eqtrid ⊒x=yβ†’V=Base⦋y/x⦌R
37 36 sqxpeqd ⊒x=yβ†’VΓ—V=Base⦋y/x⦌RΓ—Base⦋y/x⦌R
38 34 37 reseq12d ⊒x=yβ†’dist⁑Rβ†ΎVΓ—V=dist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R
39 4 38 eqtrid ⊒x=yβ†’E=dist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R
40 36 fveq2d ⊒x=yβ†’βˆžMet⁑V=∞Met⁑Base⦋y/x⦌R
41 39 40 eleq12d ⊒x=yβ†’E∈∞Met⁑V↔dist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R∈∞Met⁑Base⦋y/x⦌R
42 33 41 rspc ⊒y∈Iβ†’βˆ€x∈IE∈∞Met⁑Vβ†’dist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R∈∞Met⁑Base⦋y/x⦌R
43 24 42 mpan9 βŠ’Ο†βˆ§y∈Iβ†’dist⁑⦋y/x⦌Rβ†ΎBase⦋y/x⦌RΓ—Base⦋y/x⦌R∈∞Met⁑Base⦋y/x⦌R
44 15 2 16 17 5 6 7 23 43 prdsxmetlem βŠ’Ο†β†’D∈∞Met⁑B