Metamath Proof Explorer


Theorem precofvallem

Description: Lemma for precofval to enable catlid or catrid . (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses precofvallem.a A = Base C
precofvallem.b B = Base E
precofvallem.1 1 ˙ = Id D
precofvallem.i I = Id E
precofvallem.f φ F C Func D G
precofvallem.k φ K D Func E L
precofvallem.x φ X A
Assertion precofvallem φ F X L F X 1 ˙ F X = I K F X K F X B

Proof

Step Hyp Ref Expression
1 precofvallem.a A = Base C
2 precofvallem.b B = Base E
3 precofvallem.1 1 ˙ = Id D
4 precofvallem.i I = Id E
5 precofvallem.f φ F C Func D G
6 precofvallem.k φ K D Func E L
7 precofvallem.x φ X A
8 eqid Base D = Base D
9 1 8 5 funcf1 φ F : A Base D
10 9 7 fvco3d φ 1 ˙ F X = 1 ˙ F X
11 10 fveq2d φ F X L F X 1 ˙ F X = F X L F X 1 ˙ F X
12 9 7 ffvelcdmd φ F X Base D
13 8 3 4 6 12 funcid φ F X L F X 1 ˙ F X = I K F X
14 11 13 eqtrd φ F X L F X 1 ˙ F X = I K F X
15 8 2 6 funcf1 φ K : Base D B
16 15 12 ffvelcdmd φ K F X B
17 14 16 jca φ F X L F X 1 ˙ F X = I K F X K F X B