Metamath Proof Explorer


Theorem predbrg

Description: Closed form of elpredim . (Contributed by Scott Fenton, 13-Apr-2011) (Revised by NM, 5-Apr-2016)

Ref Expression
Assertion predbrg XVYPredRAXYRX

Proof

Step Hyp Ref Expression
1 predeq3 x=XPredRAx=PredRAX
2 1 eleq2d x=XYPredRAxYPredRAX
3 breq2 x=XYRxYRX
4 2 3 imbi12d x=XYPredRAxYRxYPredRAXYRX
5 vex xV
6 5 elpredim YPredRAxYRx
7 4 6 vtoclg XVYPredRAXYRX
8 7 imp XVYPredRAXYRX