Description: Equality of two unordered pairs when one member of each pair contains the other member. Closed form of preleq . (Contributed by AV, 15-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | preleqg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elneq | |
|
2 | 1 | 3ad2ant1 | |
3 | preq12nebg | |
|
4 | 2 3 | syld3an3 | |
5 | eleq12 | |
|
6 | elnotel | |
|
7 | 6 | pm2.21d | |
8 | 5 7 | syl6bi | |
9 | 8 | com3l | |
10 | 9 | a1d | |
11 | 10 | 3imp | |
12 | 11 | com12 | |
13 | 12 | jao1i | |
14 | 13 | com12 | |
15 | 4 14 | sylbid | |
16 | 15 | imp | |