Metamath Proof Explorer


Theorem preleqg

Description: Equality of two unordered pairs when one member of each pair contains the other member. Closed form of preleq . (Contributed by AV, 15-Jun-2022)

Ref Expression
Assertion preleqg ABBVCDAB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 elneq ABAB
2 1 3ad2ant1 ABBVCDAB
3 preq12nebg ABBVABAB=CDA=CB=DA=DB=C
4 2 3 syld3an3 ABBVCDAB=CDA=CB=DA=DB=C
5 eleq12 A=DB=CABDC
6 elnotel DC¬CD
7 6 pm2.21d DCCDA=CB=D
8 5 7 syl6bi A=DB=CABCDA=CB=D
9 8 com3l ABCDA=DB=CA=CB=D
10 9 a1d ABBVCDA=DB=CA=CB=D
11 10 3imp ABBVCDA=DB=CA=CB=D
12 11 com12 A=DB=CABBVCDA=CB=D
13 12 jao1i A=CB=DA=DB=CABBVCDA=CB=D
14 13 com12 ABBVCDA=CB=DA=DB=CA=CB=D
15 4 14 sylbid ABBVCDAB=CDA=CB=D
16 15 imp ABBVCDAB=CDA=CB=D