Metamath Proof Explorer


Theorem preq1b

Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same second element iff the first elements are equal. (Contributed by AV, 18-Dec-2020)

Ref Expression
Hypotheses preq1b.a φAV
preq1b.b φBW
Assertion preq1b φAC=BCA=B

Proof

Step Hyp Ref Expression
1 preq1b.a φAV
2 preq1b.b φBW
3 prid1g AVAAC
4 1 3 syl φAAC
5 eleq2 AC=BCAACABC
6 4 5 syl5ibcom φAC=BCABC
7 elprg AVABCA=BA=C
8 1 7 syl φABCA=BA=C
9 6 8 sylibd φAC=BCA=BA=C
10 9 imp φAC=BCA=BA=C
11 prid1g BWBBC
12 2 11 syl φBBC
13 eleq2 AC=BCBACBBC
14 12 13 syl5ibrcom φAC=BCBAC
15 elprg BWBACB=AB=C
16 2 15 syl φBACB=AB=C
17 14 16 sylibd φAC=BCB=AB=C
18 17 imp φAC=BCB=AB=C
19 eqcom A=BB=A
20 eqeq2 A=CB=AB=C
21 10 18 19 20 oplem1 φAC=BCA=B
22 21 ex φAC=BCA=B
23 preq1 A=BAC=BC
24 22 23 impbid1 φAC=BCA=B