Metamath Proof Explorer


Theorem prf2

Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses prfval.k P = F ⟨,⟩ F G
prfval.b B = Base C
prfval.h H = Hom C
prfval.c φ F C Func D
prfval.d φ G C Func E
prf1.x φ X B
prf2.y φ Y B
prf2.k φ K X H Y
Assertion prf2 φ X 2 nd P Y K = X 2 nd F Y K X 2 nd G Y K

Proof

Step Hyp Ref Expression
1 prfval.k P = F ⟨,⟩ F G
2 prfval.b B = Base C
3 prfval.h H = Hom C
4 prfval.c φ F C Func D
5 prfval.d φ G C Func E
6 prf1.x φ X B
7 prf2.y φ Y B
8 prf2.k φ K X H Y
9 1 2 3 4 5 6 7 prf2fval φ X 2 nd P Y = h X H Y X 2 nd F Y h X 2 nd G Y h
10 simpr φ h = K h = K
11 10 fveq2d φ h = K X 2 nd F Y h = X 2 nd F Y K
12 10 fveq2d φ h = K X 2 nd G Y h = X 2 nd G Y K
13 11 12 opeq12d φ h = K X 2 nd F Y h X 2 nd G Y h = X 2 nd F Y K X 2 nd G Y K
14 opex X 2 nd F Y K X 2 nd G Y K V
15 14 a1i φ X 2 nd F Y K X 2 nd G Y K V
16 9 13 8 15 fvmptd φ X 2 nd P Y K = X 2 nd F Y K X 2 nd G Y K