Metamath Proof Explorer


Theorem prf2

Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses prfval.k P=F⟨,⟩FG
prfval.b B=BaseC
prfval.h H=HomC
prfval.c φFCFuncD
prfval.d φGCFuncE
prf1.x φXB
prf2.y φYB
prf2.k φKXHY
Assertion prf2 φX2ndPYK=X2ndFYKX2ndGYK

Proof

Step Hyp Ref Expression
1 prfval.k P=F⟨,⟩FG
2 prfval.b B=BaseC
3 prfval.h H=HomC
4 prfval.c φFCFuncD
5 prfval.d φGCFuncE
6 prf1.x φXB
7 prf2.y φYB
8 prf2.k φKXHY
9 1 2 3 4 5 6 7 prf2fval φX2ndPY=hXHYX2ndFYhX2ndGYh
10 simpr φh=Kh=K
11 10 fveq2d φh=KX2ndFYh=X2ndFYK
12 10 fveq2d φh=KX2ndGYh=X2ndGYK
13 11 12 opeq12d φh=KX2ndFYhX2ndGYh=X2ndFYKX2ndGYK
14 opex X2ndFYKX2ndGYKV
15 14 a1i φX2ndFYKX2ndGYKV
16 9 13 8 15 fvmptd φX2ndPYK=X2ndFYKX2ndGYK