Metamath Proof Explorer


Theorem pridlc2

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1 G=1stR
ispridlc.2 H=2ndR
ispridlc.3 X=ranG
Assertion pridlc2 RCRingOpsPPrIdlRAXPBXAHBPBP

Proof

Step Hyp Ref Expression
1 ispridlc.1 G=1stR
2 ispridlc.2 H=2ndR
3 ispridlc.3 X=ranG
4 eldifn AXP¬AP
5 4 3ad2ant1 AXPBXAHBP¬AP
6 5 adantl RCRingOpsPPrIdlRAXPBXAHBP¬AP
7 eldifi AXPAX
8 1 2 3 pridlc RCRingOpsPPrIdlRAXBXAHBPAPBP
9 8 ord RCRingOpsPPrIdlRAXBXAHBP¬APBP
10 7 9 syl3anr1 RCRingOpsPPrIdlRAXPBXAHBP¬APBP
11 6 10 mpd RCRingOpsPPrIdlRAXPBXAHBPBP