Metamath Proof Explorer


Theorem pridlc2

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1 G = 1 st R
ispridlc.2 H = 2 nd R
ispridlc.3 X = ran G
Assertion pridlc2 R CRingOps P PrIdl R A X P B X A H B P B P

Proof

Step Hyp Ref Expression
1 ispridlc.1 G = 1 st R
2 ispridlc.2 H = 2 nd R
3 ispridlc.3 X = ran G
4 eldifn A X P ¬ A P
5 4 3ad2ant1 A X P B X A H B P ¬ A P
6 5 adantl R CRingOps P PrIdl R A X P B X A H B P ¬ A P
7 eldifi A X P A X
8 1 2 3 pridlc R CRingOps P PrIdl R A X B X A H B P A P B P
9 8 ord R CRingOps P PrIdl R A X B X A H B P ¬ A P B P
10 7 9 syl3anr1 R CRingOps P PrIdl R A X P B X A H B P ¬ A P B P
11 6 10 mpd R CRingOps P PrIdl R A X P B X A H B P B P