Metamath Proof Explorer


Theorem prjspnval

Description: Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023)

Ref Expression
Assertion prjspnval N0KDivRingNℙ𝕣𝕠𝕛nK=ℙ𝕣𝕠𝕛KfreeLMod0N

Proof

Step Hyp Ref Expression
1 oveq2 n=N0n=0N
2 1 oveq2d n=NkfreeLMod0n=kfreeLMod0N
3 2 fveq2d n=Nℙ𝕣𝕠𝕛kfreeLMod0n=ℙ𝕣𝕠𝕛kfreeLMod0N
4 fvoveq1 k=Kℙ𝕣𝕠𝕛kfreeLMod0N=ℙ𝕣𝕠𝕛KfreeLMod0N
5 df-prjspn ℙ𝕣𝕠𝕛n=n0,kDivRingℙ𝕣𝕠𝕛kfreeLMod0n
6 fvex ℙ𝕣𝕠𝕛KfreeLMod0NV
7 3 4 5 6 ovmpo N0KDivRingNℙ𝕣𝕠𝕛nK=ℙ𝕣𝕠𝕛KfreeLMod0N