Metamath Proof Explorer


Theorem prmgaplem1

Description: Lemma for prmgap : The factorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by that integer. (Contributed by AV, 13-Aug-2020)

Ref Expression
Assertion prmgaplem1 N I 2 N I N ! + I

Proof

Step Hyp Ref Expression
1 elfzelz I 2 N I
2 1 adantl N I 2 N I
3 nnnn0 N N 0
4 3 faccld N N !
5 4 nnzd N N !
6 5 adantr N I 2 N N !
7 elfzuz I 2 N I 2
8 eluz2nn I 2 I
9 7 8 syl I 2 N I
10 elfzuz3 I 2 N N I
11 9 10 jca I 2 N I N I
12 11 adantl N I 2 N I N I
13 dvdsfac I N I I N !
14 12 13 syl N I 2 N I N !
15 iddvds I I I
16 1 15 syl I 2 N I I
17 16 adantl N I 2 N I I
18 2 6 2 14 17 dvds2addd N I 2 N I N ! + I