Metamath Proof Explorer


Theorem prmgaplem1

Description: Lemma for prmgap : The factorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by that integer. (Contributed by AV, 13-Aug-2020)

Ref Expression
Assertion prmgaplem1 ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) )

Proof

Step Hyp Ref Expression
1 elfzelz ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ )
2 1 adantl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℤ )
3 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
4 3 faccld ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℕ )
5 4 nnzd ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℤ )
6 5 adantr ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℤ )
7 elfzuz ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ( ℤ ‘ 2 ) )
8 eluz2nn ( 𝐼 ∈ ( ℤ ‘ 2 ) → 𝐼 ∈ ℕ )
9 7 8 syl ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℕ )
10 elfzuz3 ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝐼 ) )
11 9 10 jca ( 𝐼 ∈ ( 2 ... 𝑁 ) → ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ( ℤ𝐼 ) ) )
12 11 adantl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ( ℤ𝐼 ) ) )
13 dvdsfac ( ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ( ℤ𝐼 ) ) → 𝐼 ∥ ( ! ‘ 𝑁 ) )
14 12 13 syl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ! ‘ 𝑁 ) )
15 iddvds ( 𝐼 ∈ ℤ → 𝐼𝐼 )
16 1 15 syl ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼𝐼 )
17 16 adantl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼𝐼 )
18 2 6 2 14 17 dvds2addd ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) )