| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℤ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∈  ℤ ) | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 3 | faccld | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 5 | 4 | nnzd | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( ! ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 7 |  | elfzuz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 8 |  | eluz2nn | ⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 2 )  →  𝐼  ∈  ℕ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℕ ) | 
						
							| 10 |  | elfzuz3 | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝐼 ) ) | 
						
							| 11 | 9 10 | jca | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  ( 𝐼  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝐼 ) ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( 𝐼  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝐼 ) ) ) | 
						
							| 13 |  | dvdsfac | ⊢ ( ( 𝐼  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝐼 ) )  →  𝐼  ∥  ( ! ‘ 𝑁 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∥  ( ! ‘ 𝑁 ) ) | 
						
							| 15 |  | iddvds | ⊢ ( 𝐼  ∈  ℤ  →  𝐼  ∥  𝐼 ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∥  𝐼 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∥  𝐼 ) | 
						
							| 18 | 2 6 2 14 17 | dvds2addd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∥  ( ( ! ‘ 𝑁 )  +  𝐼 ) ) |