| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℤ ) |
| 3 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 4 |
3
|
faccld |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 5 |
4
|
nnzd |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℤ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℤ ) |
| 7 |
|
elfzuz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
| 8 |
|
eluz2nn |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → 𝐼 ∈ ℕ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℕ ) |
| 10 |
|
elfzuz3 |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 11 |
9 10
|
jca |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐼 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐼 ) ) ) |
| 13 |
|
dvdsfac |
⊢ ( ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐼 ) ) → 𝐼 ∥ ( ! ‘ 𝑁 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ! ‘ 𝑁 ) ) |
| 15 |
|
iddvds |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∥ 𝐼 ) |
| 16 |
1 15
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∥ 𝐼 ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ 𝐼 ) |
| 18 |
2 6 2 14 17
|
dvds2addd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ) |