| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzuz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
| 3 |
|
breq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ↔ 𝐼 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ) ) |
| 4 |
|
breq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∥ 𝐼 ↔ 𝐼 ∥ 𝐼 ) ) |
| 5 |
3 4
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ↔ ( 𝐼 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ∧ 𝐼 ∥ 𝐼 ) ) ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑖 = 𝐼 ) → ( ( 𝑖 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ↔ ( 𝐼 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ∧ 𝐼 ∥ 𝐼 ) ) ) |
| 7 |
|
prmgaplem1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ) |
| 8 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ ) |
| 9 |
|
iddvds |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∥ 𝐼 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∥ 𝐼 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ 𝐼 ) |
| 12 |
7 11
|
jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( 𝐼 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ∧ 𝐼 ∥ 𝐼 ) ) |
| 13 |
2 6 12
|
rspcedvd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ) |
| 14 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 15 |
14
|
faccld |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 17 |
|
eluz2nn |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → 𝐼 ∈ ℕ ) |
| 18 |
1 17
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℕ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℕ ) |
| 20 |
16 19
|
nnaddcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ( ! ‘ 𝑁 ) + 𝐼 ) ∈ ℕ ) |
| 21 |
|
ncoprmgcdgt1b |
⊢ ( ( ( ( ! ‘ 𝑁 ) + 𝐼 ) ∈ ℕ ∧ 𝐼 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ↔ 1 < ( ( ( ! ‘ 𝑁 ) + 𝐼 ) gcd 𝐼 ) ) ) |
| 22 |
20 19 21
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ ( ( ! ‘ 𝑁 ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ↔ 1 < ( ( ( ! ‘ 𝑁 ) + 𝐼 ) gcd 𝐼 ) ) ) |
| 23 |
13 22
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 1 < ( ( ( ! ‘ 𝑁 ) + 𝐼 ) gcd 𝐼 ) ) |