Metamath Proof Explorer


Theorem prmgaplem2

Description: Lemma for prmgap : The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020)

Ref Expression
Assertion prmgaplem2
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( ! ` N ) + I ) gcd I ) )

Proof

Step Hyp Ref Expression
1 elfzuz
 |-  ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) )
2 1 adantl
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ( ZZ>= ` 2 ) )
3 breq1
 |-  ( i = I -> ( i || ( ( ! ` N ) + I ) <-> I || ( ( ! ` N ) + I ) ) )
4 breq1
 |-  ( i = I -> ( i || I <-> I || I ) )
5 3 4 anbi12d
 |-  ( i = I -> ( ( i || ( ( ! ` N ) + I ) /\ i || I ) <-> ( I || ( ( ! ` N ) + I ) /\ I || I ) ) )
6 5 adantl
 |-  ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ i = I ) -> ( ( i || ( ( ! ` N ) + I ) /\ i || I ) <-> ( I || ( ( ! ` N ) + I ) /\ I || I ) ) )
7 prmgaplem1
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( ! ` N ) + I ) )
8 elfzelz
 |-  ( I e. ( 2 ... N ) -> I e. ZZ )
9 iddvds
 |-  ( I e. ZZ -> I || I )
10 8 9 syl
 |-  ( I e. ( 2 ... N ) -> I || I )
11 10 adantl
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I )
12 7 11 jca
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( I || ( ( ! ` N ) + I ) /\ I || I ) )
13 2 6 12 rspcedvd
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. i e. ( ZZ>= ` 2 ) ( i || ( ( ! ` N ) + I ) /\ i || I ) )
14 nnnn0
 |-  ( N e. NN -> N e. NN0 )
15 14 faccld
 |-  ( N e. NN -> ( ! ` N ) e. NN )
16 15 adantr
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ! ` N ) e. NN )
17 eluz2nn
 |-  ( I e. ( ZZ>= ` 2 ) -> I e. NN )
18 1 17 syl
 |-  ( I e. ( 2 ... N ) -> I e. NN )
19 18 adantl
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. NN )
20 16 19 nnaddcld
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ( ! ` N ) + I ) e. NN )
21 ncoprmgcdgt1b
 |-  ( ( ( ( ! ` N ) + I ) e. NN /\ I e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( ! ` N ) + I ) /\ i || I ) <-> 1 < ( ( ( ! ` N ) + I ) gcd I ) ) )
22 20 19 21 syl2anc
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( ! ` N ) + I ) /\ i || I ) <-> 1 < ( ( ( ! ` N ) + I ) gcd I ) ) )
23 13 22 mpbid
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( ! ` N ) + I ) gcd I ) )