Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz |
|- ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) |
2 |
1
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ( ZZ>= ` 2 ) ) |
3 |
|
breq1 |
|- ( i = I -> ( i || ( ( ! ` N ) + I ) <-> I || ( ( ! ` N ) + I ) ) ) |
4 |
|
breq1 |
|- ( i = I -> ( i || I <-> I || I ) ) |
5 |
3 4
|
anbi12d |
|- ( i = I -> ( ( i || ( ( ! ` N ) + I ) /\ i || I ) <-> ( I || ( ( ! ` N ) + I ) /\ I || I ) ) ) |
6 |
5
|
adantl |
|- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ i = I ) -> ( ( i || ( ( ! ` N ) + I ) /\ i || I ) <-> ( I || ( ( ! ` N ) + I ) /\ I || I ) ) ) |
7 |
|
prmgaplem1 |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( ! ` N ) + I ) ) |
8 |
|
elfzelz |
|- ( I e. ( 2 ... N ) -> I e. ZZ ) |
9 |
|
iddvds |
|- ( I e. ZZ -> I || I ) |
10 |
8 9
|
syl |
|- ( I e. ( 2 ... N ) -> I || I ) |
11 |
10
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I ) |
12 |
7 11
|
jca |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( I || ( ( ! ` N ) + I ) /\ I || I ) ) |
13 |
2 6 12
|
rspcedvd |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. i e. ( ZZ>= ` 2 ) ( i || ( ( ! ` N ) + I ) /\ i || I ) ) |
14 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
15 |
14
|
faccld |
|- ( N e. NN -> ( ! ` N ) e. NN ) |
16 |
15
|
adantr |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ! ` N ) e. NN ) |
17 |
|
eluz2nn |
|- ( I e. ( ZZ>= ` 2 ) -> I e. NN ) |
18 |
1 17
|
syl |
|- ( I e. ( 2 ... N ) -> I e. NN ) |
19 |
18
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. NN ) |
20 |
16 19
|
nnaddcld |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ( ! ` N ) + I ) e. NN ) |
21 |
|
ncoprmgcdgt1b |
|- ( ( ( ( ! ` N ) + I ) e. NN /\ I e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( ! ` N ) + I ) /\ i || I ) <-> 1 < ( ( ( ! ` N ) + I ) gcd I ) ) ) |
22 |
20 19 21
|
syl2anc |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( ! ` N ) + I ) /\ i || I ) <-> 1 < ( ( ( ! ` N ) + I ) gcd I ) ) ) |
23 |
13 22
|
mpbid |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( ! ` N ) + I ) gcd I ) ) |