| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzelz |  |-  ( I e. ( 2 ... N ) -> I e. ZZ ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ZZ ) | 
						
							| 3 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 4 | 3 | faccld |  |-  ( N e. NN -> ( ! ` N ) e. NN ) | 
						
							| 5 | 4 | nnzd |  |-  ( N e. NN -> ( ! ` N ) e. ZZ ) | 
						
							| 6 | 5 | adantr |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ! ` N ) e. ZZ ) | 
						
							| 7 |  | elfzuz |  |-  ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) | 
						
							| 8 |  | eluz2nn |  |-  ( I e. ( ZZ>= ` 2 ) -> I e. NN ) | 
						
							| 9 | 7 8 | syl |  |-  ( I e. ( 2 ... N ) -> I e. NN ) | 
						
							| 10 |  | elfzuz3 |  |-  ( I e. ( 2 ... N ) -> N e. ( ZZ>= ` I ) ) | 
						
							| 11 | 9 10 | jca |  |-  ( I e. ( 2 ... N ) -> ( I e. NN /\ N e. ( ZZ>= ` I ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( I e. NN /\ N e. ( ZZ>= ` I ) ) ) | 
						
							| 13 |  | dvdsfac |  |-  ( ( I e. NN /\ N e. ( ZZ>= ` I ) ) -> I || ( ! ` N ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ! ` N ) ) | 
						
							| 15 |  | iddvds |  |-  ( I e. ZZ -> I || I ) | 
						
							| 16 | 1 15 | syl |  |-  ( I e. ( 2 ... N ) -> I || I ) | 
						
							| 17 | 16 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I ) | 
						
							| 18 | 2 6 2 14 17 | dvds2addd |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( ! ` N ) + I ) ) |