Step |
Hyp |
Ref |
Expression |
1 |
|
elfzelz |
|- ( I e. ( 2 ... N ) -> I e. ZZ ) |
2 |
1
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ZZ ) |
3 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
4 |
3
|
faccld |
|- ( N e. NN -> ( ! ` N ) e. NN ) |
5 |
4
|
nnzd |
|- ( N e. NN -> ( ! ` N ) e. ZZ ) |
6 |
5
|
adantr |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ! ` N ) e. ZZ ) |
7 |
|
elfzuz |
|- ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) |
8 |
|
eluz2nn |
|- ( I e. ( ZZ>= ` 2 ) -> I e. NN ) |
9 |
7 8
|
syl |
|- ( I e. ( 2 ... N ) -> I e. NN ) |
10 |
|
elfzuz3 |
|- ( I e. ( 2 ... N ) -> N e. ( ZZ>= ` I ) ) |
11 |
9 10
|
jca |
|- ( I e. ( 2 ... N ) -> ( I e. NN /\ N e. ( ZZ>= ` I ) ) ) |
12 |
11
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( I e. NN /\ N e. ( ZZ>= ` I ) ) ) |
13 |
|
dvdsfac |
|- ( ( I e. NN /\ N e. ( ZZ>= ` I ) ) -> I || ( ! ` N ) ) |
14 |
12 13
|
syl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ! ` N ) ) |
15 |
|
iddvds |
|- ( I e. ZZ -> I || I ) |
16 |
1 15
|
syl |
|- ( I e. ( 2 ... N ) -> I || I ) |
17 |
16
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I ) |
18 |
2 6 2 14 17
|
dvds2addd |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( ! ` N ) + I ) ) |