| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzelz |
|- ( I e. ( 2 ... N ) -> I e. ZZ ) |
| 2 |
1
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ZZ ) |
| 3 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 4 |
3
|
faccld |
|- ( N e. NN -> ( ! ` N ) e. NN ) |
| 5 |
4
|
nnzd |
|- ( N e. NN -> ( ! ` N ) e. ZZ ) |
| 6 |
5
|
adantr |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ! ` N ) e. ZZ ) |
| 7 |
|
elfzuz |
|- ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) |
| 8 |
|
eluz2nn |
|- ( I e. ( ZZ>= ` 2 ) -> I e. NN ) |
| 9 |
7 8
|
syl |
|- ( I e. ( 2 ... N ) -> I e. NN ) |
| 10 |
|
elfzuz3 |
|- ( I e. ( 2 ... N ) -> N e. ( ZZ>= ` I ) ) |
| 11 |
9 10
|
jca |
|- ( I e. ( 2 ... N ) -> ( I e. NN /\ N e. ( ZZ>= ` I ) ) ) |
| 12 |
11
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( I e. NN /\ N e. ( ZZ>= ` I ) ) ) |
| 13 |
|
dvdsfac |
|- ( ( I e. NN /\ N e. ( ZZ>= ` I ) ) -> I || ( ! ` N ) ) |
| 14 |
12 13
|
syl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ! ` N ) ) |
| 15 |
|
iddvds |
|- ( I e. ZZ -> I || I ) |
| 16 |
1 15
|
syl |
|- ( I e. ( 2 ... N ) -> I || I ) |
| 17 |
16
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I ) |
| 18 |
2 6 2 14 17
|
dvds2addd |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( ! ` N ) + I ) ) |