Step |
Hyp |
Ref |
Expression |
1 |
|
elfzelz |
|- ( I e. ( 2 ... N ) -> I e. ZZ ) |
2 |
1
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ZZ ) |
3 |
|
fzssz |
|- ( 1 ... N ) C_ ZZ |
4 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
5 |
3 4
|
pm3.2i |
|- ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) |
6 |
|
lcmfcl |
|- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) -> ( _lcm ` ( 1 ... N ) ) e. NN0 ) |
7 |
6
|
nn0zd |
|- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) -> ( _lcm ` ( 1 ... N ) ) e. ZZ ) |
8 |
5 7
|
mp1i |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. ZZ ) |
9 |
|
breq1 |
|- ( x = I -> ( x || ( _lcm ` ( 1 ... N ) ) <-> I || ( _lcm ` ( 1 ... N ) ) ) ) |
10 |
|
dvdslcmf |
|- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) -> A. x e. ( 1 ... N ) x || ( _lcm ` ( 1 ... N ) ) ) |
11 |
5 10
|
mp1i |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> A. x e. ( 1 ... N ) x || ( _lcm ` ( 1 ... N ) ) ) |
12 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
13 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... N ) C_ ( 1 ... N ) ) |
14 |
12 13
|
mp1i |
|- ( N e. NN -> ( 2 ... N ) C_ ( 1 ... N ) ) |
15 |
14
|
sselda |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ( 1 ... N ) ) |
16 |
9 11 15
|
rspcdva |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( _lcm ` ( 1 ... N ) ) ) |
17 |
|
iddvds |
|- ( I e. ZZ -> I || I ) |
18 |
1 17
|
syl |
|- ( I e. ( 2 ... N ) -> I || I ) |
19 |
18
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I ) |
20 |
2 8 2 16 19
|
dvds2addd |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( _lcm ` ( 1 ... N ) ) + I ) ) |