| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzelz |  |-  ( I e. ( 2 ... N ) -> I e. ZZ ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ZZ ) | 
						
							| 3 |  | fzssz |  |-  ( 1 ... N ) C_ ZZ | 
						
							| 4 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 5 | 3 4 | pm3.2i |  |-  ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) | 
						
							| 6 |  | lcmfcl |  |-  ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) -> ( _lcm ` ( 1 ... N ) ) e. NN0 ) | 
						
							| 7 | 6 | nn0zd |  |-  ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) -> ( _lcm ` ( 1 ... N ) ) e. ZZ ) | 
						
							| 8 | 5 7 | mp1i |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. ZZ ) | 
						
							| 9 |  | breq1 |  |-  ( x = I -> ( x || ( _lcm ` ( 1 ... N ) ) <-> I || ( _lcm ` ( 1 ... N ) ) ) ) | 
						
							| 10 |  | dvdslcmf |  |-  ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) -> A. x e. ( 1 ... N ) x || ( _lcm ` ( 1 ... N ) ) ) | 
						
							| 11 | 5 10 | mp1i |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> A. x e. ( 1 ... N ) x || ( _lcm ` ( 1 ... N ) ) ) | 
						
							| 12 |  | 2eluzge1 |  |-  2 e. ( ZZ>= ` 1 ) | 
						
							| 13 |  | fzss1 |  |-  ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... N ) C_ ( 1 ... N ) ) | 
						
							| 14 | 12 13 | mp1i |  |-  ( N e. NN -> ( 2 ... N ) C_ ( 1 ... N ) ) | 
						
							| 15 | 14 | sselda |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ( 1 ... N ) ) | 
						
							| 16 | 9 11 15 | rspcdva |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( _lcm ` ( 1 ... N ) ) ) | 
						
							| 17 |  | iddvds |  |-  ( I e. ZZ -> I || I ) | 
						
							| 18 | 1 17 | syl |  |-  ( I e. ( 2 ... N ) -> I || I ) | 
						
							| 19 | 18 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I ) | 
						
							| 20 | 2 8 2 16 19 | dvds2addd |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( _lcm ` ( 1 ... N ) ) + I ) ) |