| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzuz |
|- ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) |
| 2 |
1
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ( ZZ>= ` 2 ) ) |
| 3 |
|
breq1 |
|- ( i = I -> ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) <-> I || ( ( _lcm ` ( 1 ... N ) ) + I ) ) ) |
| 4 |
|
breq1 |
|- ( i = I -> ( i || I <-> I || I ) ) |
| 5 |
3 4
|
anbi12d |
|- ( i = I -> ( ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) ) ) |
| 6 |
5
|
adantl |
|- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ i = I ) -> ( ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) ) ) |
| 7 |
|
prmgaplcmlem1 |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( _lcm ` ( 1 ... N ) ) + I ) ) |
| 8 |
|
elfzelz |
|- ( I e. ( 2 ... N ) -> I e. ZZ ) |
| 9 |
|
iddvds |
|- ( I e. ZZ -> I || I ) |
| 10 |
8 9
|
syl |
|- ( I e. ( 2 ... N ) -> I || I ) |
| 11 |
10
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I ) |
| 12 |
7 11
|
jca |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) ) |
| 13 |
2 6 12
|
rspcedvd |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) ) |
| 14 |
|
fzssz |
|- ( 1 ... N ) C_ ZZ |
| 15 |
|
fzfid |
|- ( N e. NN -> ( 1 ... N ) e. Fin ) |
| 16 |
|
0nelfz1 |
|- 0 e/ ( 1 ... N ) |
| 17 |
16
|
a1i |
|- ( N e. NN -> 0 e/ ( 1 ... N ) ) |
| 18 |
|
lcmfn0cl |
|- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
| 19 |
14 15 17 18
|
mp3an2i |
|- ( N e. NN -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
| 20 |
19
|
adantr |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
| 21 |
|
eluz2nn |
|- ( I e. ( ZZ>= ` 2 ) -> I e. NN ) |
| 22 |
1 21
|
syl |
|- ( I e. ( 2 ... N ) -> I e. NN ) |
| 23 |
22
|
adantl |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. NN ) |
| 24 |
20 23
|
nnaddcld |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ( _lcm ` ( 1 ... N ) ) + I ) e. NN ) |
| 25 |
|
ncoprmgcdgt1b |
|- ( ( ( ( _lcm ` ( 1 ... N ) ) + I ) e. NN /\ I e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) ) ) |
| 26 |
24 23 25
|
syl2anc |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) ) ) |
| 27 |
13 26
|
mpbid |
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) ) |