| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzuz |  |-  ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ( ZZ>= ` 2 ) ) | 
						
							| 3 |  | breq1 |  |-  ( i = I -> ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) <-> I || ( ( _lcm ` ( 1 ... N ) ) + I ) ) ) | 
						
							| 4 |  | breq1 |  |-  ( i = I -> ( i || I <-> I || I ) ) | 
						
							| 5 | 3 4 | anbi12d |  |-  ( i = I -> ( ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ i = I ) -> ( ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) ) ) | 
						
							| 7 |  | prmgaplcmlem1 |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( _lcm ` ( 1 ... N ) ) + I ) ) | 
						
							| 8 |  | elfzelz |  |-  ( I e. ( 2 ... N ) -> I e. ZZ ) | 
						
							| 9 |  | iddvds |  |-  ( I e. ZZ -> I || I ) | 
						
							| 10 | 8 9 | syl |  |-  ( I e. ( 2 ... N ) -> I || I ) | 
						
							| 11 | 10 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I ) | 
						
							| 12 | 7 11 | jca |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) ) | 
						
							| 13 | 2 6 12 | rspcedvd |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) ) | 
						
							| 14 |  | fzssz |  |-  ( 1 ... N ) C_ ZZ | 
						
							| 15 |  | fzfid |  |-  ( N e. NN -> ( 1 ... N ) e. Fin ) | 
						
							| 16 |  | 0nelfz1 |  |-  0 e/ ( 1 ... N ) | 
						
							| 17 | 16 | a1i |  |-  ( N e. NN -> 0 e/ ( 1 ... N ) ) | 
						
							| 18 |  | lcmfn0cl |  |-  ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) | 
						
							| 19 | 14 15 17 18 | mp3an2i |  |-  ( N e. NN -> ( _lcm ` ( 1 ... N ) ) e. NN ) | 
						
							| 20 | 19 | adantr |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) | 
						
							| 21 |  | eluz2nn |  |-  ( I e. ( ZZ>= ` 2 ) -> I e. NN ) | 
						
							| 22 | 1 21 | syl |  |-  ( I e. ( 2 ... N ) -> I e. NN ) | 
						
							| 23 | 22 | adantl |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. NN ) | 
						
							| 24 | 20 23 | nnaddcld |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ( _lcm ` ( 1 ... N ) ) + I ) e. NN ) | 
						
							| 25 |  | ncoprmgcdgt1b |  |-  ( ( ( ( _lcm ` ( 1 ... N ) ) + I ) e. NN /\ I e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) ) ) | 
						
							| 26 | 24 23 25 | syl2anc |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) ) ) | 
						
							| 27 | 13 26 | mpbid |  |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) ) |