Metamath Proof Explorer


Theorem prmgaplcmlem2

Description: Lemma for prmgaplcm : The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020) (Revised by AV, 27-Aug-2020)

Ref Expression
Assertion prmgaplcmlem2
|- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) )

Proof

Step Hyp Ref Expression
1 elfzuz
 |-  ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) )
2 1 adantl
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ( ZZ>= ` 2 ) )
3 breq1
 |-  ( i = I -> ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) <-> I || ( ( _lcm ` ( 1 ... N ) ) + I ) ) )
4 breq1
 |-  ( i = I -> ( i || I <-> I || I ) )
5 3 4 anbi12d
 |-  ( i = I -> ( ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) ) )
6 5 adantl
 |-  ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ i = I ) -> ( ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) ) )
7 prmgaplcmlem1
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || ( ( _lcm ` ( 1 ... N ) ) + I ) )
8 elfzelz
 |-  ( I e. ( 2 ... N ) -> I e. ZZ )
9 iddvds
 |-  ( I e. ZZ -> I || I )
10 8 9 syl
 |-  ( I e. ( 2 ... N ) -> I || I )
11 10 adantl
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I || I )
12 7 11 jca
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( I || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ I || I ) )
13 2 6 12 rspcedvd
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) )
14 fzssz
 |-  ( 1 ... N ) C_ ZZ
15 fzfid
 |-  ( N e. NN -> ( 1 ... N ) e. Fin )
16 0nelfz1
 |-  0 e/ ( 1 ... N )
17 16 a1i
 |-  ( N e. NN -> 0 e/ ( 1 ... N ) )
18 lcmfn0cl
 |-  ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN )
19 14 15 17 18 mp3an2i
 |-  ( N e. NN -> ( _lcm ` ( 1 ... N ) ) e. NN )
20 19 adantr
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN )
21 eluz2nn
 |-  ( I e. ( ZZ>= ` 2 ) -> I e. NN )
22 1 21 syl
 |-  ( I e. ( 2 ... N ) -> I e. NN )
23 22 adantl
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. NN )
24 20 23 nnaddcld
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( ( _lcm ` ( 1 ... N ) ) + I ) e. NN )
25 ncoprmgcdgt1b
 |-  ( ( ( ( _lcm ` ( 1 ... N ) ) + I ) e. NN /\ I e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) ) )
26 24 23 25 syl2anc
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || ( ( _lcm ` ( 1 ... N ) ) + I ) /\ i || I ) <-> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) ) )
27 13 26 mpbid
 |-  ( ( N e. NN /\ I e. ( 2 ... N ) ) -> 1 < ( ( ( _lcm ` ( 1 ... N ) ) + I ) gcd I ) )