| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( n e. NN -> n e. NN ) |
| 2 |
|
fzssz |
|- ( 1 ... x ) C_ ZZ |
| 3 |
2
|
a1i |
|- ( x e. NN -> ( 1 ... x ) C_ ZZ ) |
| 4 |
|
fzfi |
|- ( 1 ... x ) e. Fin |
| 5 |
4
|
a1i |
|- ( x e. NN -> ( 1 ... x ) e. Fin ) |
| 6 |
|
0nelfz1 |
|- 0 e/ ( 1 ... x ) |
| 7 |
6
|
a1i |
|- ( x e. NN -> 0 e/ ( 1 ... x ) ) |
| 8 |
|
lcmfn0cl |
|- ( ( ( 1 ... x ) C_ ZZ /\ ( 1 ... x ) e. Fin /\ 0 e/ ( 1 ... x ) ) -> ( _lcm ` ( 1 ... x ) ) e. NN ) |
| 9 |
3 5 7 8
|
syl3anc |
|- ( x e. NN -> ( _lcm ` ( 1 ... x ) ) e. NN ) |
| 10 |
9
|
adantl |
|- ( ( n e. NN /\ x e. NN ) -> ( _lcm ` ( 1 ... x ) ) e. NN ) |
| 11 |
|
eqid |
|- ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) = ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) |
| 12 |
10 11
|
fmptd |
|- ( n e. NN -> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) : NN --> NN ) |
| 13 |
|
nnex |
|- NN e. _V |
| 14 |
13 13
|
pm3.2i |
|- ( NN e. _V /\ NN e. _V ) |
| 15 |
|
elmapg |
|- ( ( NN e. _V /\ NN e. _V ) -> ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) e. ( NN ^m NN ) <-> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) : NN --> NN ) ) |
| 16 |
14 15
|
mp1i |
|- ( n e. NN -> ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) e. ( NN ^m NN ) <-> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) : NN --> NN ) ) |
| 17 |
12 16
|
mpbird |
|- ( n e. NN -> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) e. ( NN ^m NN ) ) |
| 18 |
|
prmgaplcmlem2 |
|- ( ( n e. NN /\ i e. ( 2 ... n ) ) -> 1 < ( ( ( _lcm ` ( 1 ... n ) ) + i ) gcd i ) ) |
| 19 |
|
eqidd |
|- ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) = ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ) |
| 20 |
|
oveq2 |
|- ( x = n -> ( 1 ... x ) = ( 1 ... n ) ) |
| 21 |
20
|
fveq2d |
|- ( x = n -> ( _lcm ` ( 1 ... x ) ) = ( _lcm ` ( 1 ... n ) ) ) |
| 22 |
21
|
adantl |
|- ( ( ( n e. NN /\ i e. ( 2 ... n ) ) /\ x = n ) -> ( _lcm ` ( 1 ... x ) ) = ( _lcm ` ( 1 ... n ) ) ) |
| 23 |
|
simpl |
|- ( ( n e. NN /\ i e. ( 2 ... n ) ) -> n e. NN ) |
| 24 |
|
fzssz |
|- ( 1 ... n ) C_ ZZ |
| 25 |
|
fzfi |
|- ( 1 ... n ) e. Fin |
| 26 |
24 25
|
pm3.2i |
|- ( ( 1 ... n ) C_ ZZ /\ ( 1 ... n ) e. Fin ) |
| 27 |
|
lcmfcl |
|- ( ( ( 1 ... n ) C_ ZZ /\ ( 1 ... n ) e. Fin ) -> ( _lcm ` ( 1 ... n ) ) e. NN0 ) |
| 28 |
26 27
|
mp1i |
|- ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( _lcm ` ( 1 ... n ) ) e. NN0 ) |
| 29 |
19 22 23 28
|
fvmptd |
|- ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) = ( _lcm ` ( 1 ... n ) ) ) |
| 30 |
29
|
oveq1d |
|- ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) + i ) = ( ( _lcm ` ( 1 ... n ) ) + i ) ) |
| 31 |
30
|
oveq1d |
|- ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( ( ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) + i ) gcd i ) = ( ( ( _lcm ` ( 1 ... n ) ) + i ) gcd i ) ) |
| 32 |
18 31
|
breqtrrd |
|- ( ( n e. NN /\ i e. ( 2 ... n ) ) -> 1 < ( ( ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) + i ) gcd i ) ) |
| 33 |
32
|
ralrimiva |
|- ( n e. NN -> A. i e. ( 2 ... n ) 1 < ( ( ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) + i ) gcd i ) ) |
| 34 |
1 17 33
|
prmgaplem8 |
|- ( n e. NN -> E. p e. Prime E. q e. Prime ( n <_ ( q - p ) /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) |
| 35 |
34
|
rgen |
|- A. n e. NN E. p e. Prime E. q e. Prime ( n <_ ( q - p ) /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) |