| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( n e. NN -> n e. NN ) | 
						
							| 2 |  | fzssz |  |-  ( 1 ... x ) C_ ZZ | 
						
							| 3 | 2 | a1i |  |-  ( x e. NN -> ( 1 ... x ) C_ ZZ ) | 
						
							| 4 |  | fzfi |  |-  ( 1 ... x ) e. Fin | 
						
							| 5 | 4 | a1i |  |-  ( x e. NN -> ( 1 ... x ) e. Fin ) | 
						
							| 6 |  | 0nelfz1 |  |-  0 e/ ( 1 ... x ) | 
						
							| 7 | 6 | a1i |  |-  ( x e. NN -> 0 e/ ( 1 ... x ) ) | 
						
							| 8 |  | lcmfn0cl |  |-  ( ( ( 1 ... x ) C_ ZZ /\ ( 1 ... x ) e. Fin /\ 0 e/ ( 1 ... x ) ) -> ( _lcm ` ( 1 ... x ) ) e. NN ) | 
						
							| 9 | 3 5 7 8 | syl3anc |  |-  ( x e. NN -> ( _lcm ` ( 1 ... x ) ) e. NN ) | 
						
							| 10 | 9 | adantl |  |-  ( ( n e. NN /\ x e. NN ) -> ( _lcm ` ( 1 ... x ) ) e. NN ) | 
						
							| 11 |  | eqid |  |-  ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) = ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) | 
						
							| 12 | 10 11 | fmptd |  |-  ( n e. NN -> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) : NN --> NN ) | 
						
							| 13 |  | nnex |  |-  NN e. _V | 
						
							| 14 | 13 13 | pm3.2i |  |-  ( NN e. _V /\ NN e. _V ) | 
						
							| 15 |  | elmapg |  |-  ( ( NN e. _V /\ NN e. _V ) -> ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) e. ( NN ^m NN ) <-> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) : NN --> NN ) ) | 
						
							| 16 | 14 15 | mp1i |  |-  ( n e. NN -> ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) e. ( NN ^m NN ) <-> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) : NN --> NN ) ) | 
						
							| 17 | 12 16 | mpbird |  |-  ( n e. NN -> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) e. ( NN ^m NN ) ) | 
						
							| 18 |  | prmgaplcmlem2 |  |-  ( ( n e. NN /\ i e. ( 2 ... n ) ) -> 1 < ( ( ( _lcm ` ( 1 ... n ) ) + i ) gcd i ) ) | 
						
							| 19 |  | eqidd |  |-  ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) = ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ) | 
						
							| 20 |  | oveq2 |  |-  ( x = n -> ( 1 ... x ) = ( 1 ... n ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( x = n -> ( _lcm ` ( 1 ... x ) ) = ( _lcm ` ( 1 ... n ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( n e. NN /\ i e. ( 2 ... n ) ) /\ x = n ) -> ( _lcm ` ( 1 ... x ) ) = ( _lcm ` ( 1 ... n ) ) ) | 
						
							| 23 |  | simpl |  |-  ( ( n e. NN /\ i e. ( 2 ... n ) ) -> n e. NN ) | 
						
							| 24 |  | fzssz |  |-  ( 1 ... n ) C_ ZZ | 
						
							| 25 |  | fzfi |  |-  ( 1 ... n ) e. Fin | 
						
							| 26 | 24 25 | pm3.2i |  |-  ( ( 1 ... n ) C_ ZZ /\ ( 1 ... n ) e. Fin ) | 
						
							| 27 |  | lcmfcl |  |-  ( ( ( 1 ... n ) C_ ZZ /\ ( 1 ... n ) e. Fin ) -> ( _lcm ` ( 1 ... n ) ) e. NN0 ) | 
						
							| 28 | 26 27 | mp1i |  |-  ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( _lcm ` ( 1 ... n ) ) e. NN0 ) | 
						
							| 29 | 19 22 23 28 | fvmptd |  |-  ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) = ( _lcm ` ( 1 ... n ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) + i ) = ( ( _lcm ` ( 1 ... n ) ) + i ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( n e. NN /\ i e. ( 2 ... n ) ) -> ( ( ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) + i ) gcd i ) = ( ( ( _lcm ` ( 1 ... n ) ) + i ) gcd i ) ) | 
						
							| 32 | 18 31 | breqtrrd |  |-  ( ( n e. NN /\ i e. ( 2 ... n ) ) -> 1 < ( ( ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) + i ) gcd i ) ) | 
						
							| 33 | 32 | ralrimiva |  |-  ( n e. NN -> A. i e. ( 2 ... n ) 1 < ( ( ( ( x e. NN |-> ( _lcm ` ( 1 ... x ) ) ) ` n ) + i ) gcd i ) ) | 
						
							| 34 | 1 17 33 | prmgaplem8 |  |-  ( n e. NN -> E. p e. Prime E. q e. Prime ( n <_ ( q - p ) /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) | 
						
							| 35 | 34 | rgen |  |-  A. n e. NN E. p e. Prime E. q e. Prime ( n <_ ( q - p ) /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) |