| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ ) | 
						
							| 2 |  | fzssz | ⊢ ( 1 ... 𝑥 )  ⊆  ℤ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑥  ∈  ℕ  →  ( 1 ... 𝑥 )  ⊆  ℤ ) | 
						
							| 4 |  | fzfi | ⊢ ( 1 ... 𝑥 )  ∈  Fin | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑥  ∈  ℕ  →  ( 1 ... 𝑥 )  ∈  Fin ) | 
						
							| 6 |  | 0nelfz1 | ⊢ 0  ∉  ( 1 ... 𝑥 ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑥  ∈  ℕ  →  0  ∉  ( 1 ... 𝑥 ) ) | 
						
							| 8 |  | lcmfn0cl | ⊢ ( ( ( 1 ... 𝑥 )  ⊆  ℤ  ∧  ( 1 ... 𝑥 )  ∈  Fin  ∧  0  ∉  ( 1 ... 𝑥 ) )  →  ( lcm ‘ ( 1 ... 𝑥 ) )  ∈  ℕ ) | 
						
							| 9 | 3 5 7 8 | syl3anc | ⊢ ( 𝑥  ∈  ℕ  →  ( lcm ‘ ( 1 ... 𝑥 ) )  ∈  ℕ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( lcm ‘ ( 1 ... 𝑥 ) )  ∈  ℕ ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) )  =  ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) | 
						
							| 12 | 10 11 | fmptd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) : ℕ ⟶ ℕ ) | 
						
							| 13 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 14 | 13 13 | pm3.2i | ⊢ ( ℕ  ∈  V  ∧  ℕ  ∈  V ) | 
						
							| 15 |  | elmapg | ⊢ ( ( ℕ  ∈  V  ∧  ℕ  ∈  V )  →  ( ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) )  ∈  ( ℕ  ↑m  ℕ )  ↔  ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) : ℕ ⟶ ℕ ) ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) )  ∈  ( ℕ  ↑m  ℕ )  ↔  ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) : ℕ ⟶ ℕ ) ) | 
						
							| 17 | 12 16 | mpbird | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) )  ∈  ( ℕ  ↑m  ℕ ) ) | 
						
							| 18 |  | prmgaplcmlem2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  →  1  <  ( ( ( lcm ‘ ( 1 ... 𝑛 ) )  +  𝑖 )  gcd  𝑖 ) ) | 
						
							| 19 |  | eqidd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  →  ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) )  =  ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑥  =  𝑛  →  ( 1 ... 𝑥 )  =  ( 1 ... 𝑛 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝑥  =  𝑛  →  ( lcm ‘ ( 1 ... 𝑥 ) )  =  ( lcm ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  ∧  𝑥  =  𝑛 )  →  ( lcm ‘ ( 1 ... 𝑥 ) )  =  ( lcm ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 24 |  | fzssz | ⊢ ( 1 ... 𝑛 )  ⊆  ℤ | 
						
							| 25 |  | fzfi | ⊢ ( 1 ... 𝑛 )  ∈  Fin | 
						
							| 26 | 24 25 | pm3.2i | ⊢ ( ( 1 ... 𝑛 )  ⊆  ℤ  ∧  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 27 |  | lcmfcl | ⊢ ( ( ( 1 ... 𝑛 )  ⊆  ℤ  ∧  ( 1 ... 𝑛 )  ∈  Fin )  →  ( lcm ‘ ( 1 ... 𝑛 ) )  ∈  ℕ0 ) | 
						
							| 28 | 26 27 | mp1i | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  →  ( lcm ‘ ( 1 ... 𝑛 ) )  ∈  ℕ0 ) | 
						
							| 29 | 19 22 23 28 | fvmptd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  →  ( ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 )  =  ( lcm ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  →  ( ( ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 )  +  𝑖 )  =  ( ( lcm ‘ ( 1 ... 𝑛 ) )  +  𝑖 ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  →  ( ( ( ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 )  +  𝑖 )  gcd  𝑖 )  =  ( ( ( lcm ‘ ( 1 ... 𝑛 ) )  +  𝑖 )  gcd  𝑖 ) ) | 
						
							| 32 | 18 31 | breqtrrd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( 2 ... 𝑛 ) )  →  1  <  ( ( ( ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 )  +  𝑖 )  gcd  𝑖 ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( 𝑛  ∈  ℕ  →  ∀ 𝑖  ∈  ( 2 ... 𝑛 ) 1  <  ( ( ( ( 𝑥  ∈  ℕ  ↦  ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 )  +  𝑖 )  gcd  𝑖 ) ) | 
						
							| 34 | 1 17 33 | prmgaplem8 | ⊢ ( 𝑛  ∈  ℕ  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑛  ≤  ( 𝑞  −  𝑝 )  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) ) | 
						
							| 35 | 34 | rgen | ⊢ ∀ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑛  ≤  ( 𝑞  −  𝑝 )  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) |