Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
2 |
|
fzssz |
⊢ ( 1 ... 𝑥 ) ⊆ ℤ |
3 |
2
|
a1i |
⊢ ( 𝑥 ∈ ℕ → ( 1 ... 𝑥 ) ⊆ ℤ ) |
4 |
|
fzfi |
⊢ ( 1 ... 𝑥 ) ∈ Fin |
5 |
4
|
a1i |
⊢ ( 𝑥 ∈ ℕ → ( 1 ... 𝑥 ) ∈ Fin ) |
6 |
|
0nelfz1 |
⊢ 0 ∉ ( 1 ... 𝑥 ) |
7 |
6
|
a1i |
⊢ ( 𝑥 ∈ ℕ → 0 ∉ ( 1 ... 𝑥 ) ) |
8 |
|
lcmfn0cl |
⊢ ( ( ( 1 ... 𝑥 ) ⊆ ℤ ∧ ( 1 ... 𝑥 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑥 ) ) → ( lcm ‘ ( 1 ... 𝑥 ) ) ∈ ℕ ) |
9 |
3 5 7 8
|
syl3anc |
⊢ ( 𝑥 ∈ ℕ → ( lcm ‘ ( 1 ... 𝑥 ) ) ∈ ℕ ) |
10 |
9
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( lcm ‘ ( 1 ... 𝑥 ) ) ∈ ℕ ) |
11 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) |
12 |
10 11
|
fmptd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) : ℕ ⟶ ℕ ) |
13 |
|
nnex |
⊢ ℕ ∈ V |
14 |
13 13
|
pm3.2i |
⊢ ( ℕ ∈ V ∧ ℕ ∈ V ) |
15 |
|
elmapg |
⊢ ( ( ℕ ∈ V ∧ ℕ ∈ V ) → ( ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ∈ ( ℕ ↑m ℕ ) ↔ ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) : ℕ ⟶ ℕ ) ) |
16 |
14 15
|
mp1i |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ∈ ( ℕ ↑m ℕ ) ↔ ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) : ℕ ⟶ ℕ ) ) |
17 |
12 16
|
mpbird |
⊢ ( 𝑛 ∈ ℕ → ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ∈ ( ℕ ↑m ℕ ) ) |
18 |
|
prmgaplcmlem2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → 1 < ( ( ( lcm ‘ ( 1 ... 𝑛 ) ) + 𝑖 ) gcd 𝑖 ) ) |
19 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 1 ... 𝑥 ) = ( 1 ... 𝑛 ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = 𝑛 → ( lcm ‘ ( 1 ... 𝑥 ) ) = ( lcm ‘ ( 1 ... 𝑛 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) ∧ 𝑥 = 𝑛 ) → ( lcm ‘ ( 1 ... 𝑥 ) ) = ( lcm ‘ ( 1 ... 𝑛 ) ) ) |
23 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → 𝑛 ∈ ℕ ) |
24 |
|
fzssz |
⊢ ( 1 ... 𝑛 ) ⊆ ℤ |
25 |
|
fzfi |
⊢ ( 1 ... 𝑛 ) ∈ Fin |
26 |
24 25
|
pm3.2i |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℤ ∧ ( 1 ... 𝑛 ) ∈ Fin ) |
27 |
|
lcmfcl |
⊢ ( ( ( 1 ... 𝑛 ) ⊆ ℤ ∧ ( 1 ... 𝑛 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0 ) |
28 |
26 27
|
mp1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( lcm ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0 ) |
29 |
19 22 23 28
|
fvmptd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 ) = ( lcm ‘ ( 1 ... 𝑛 ) ) ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( ( ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 ) + 𝑖 ) = ( ( lcm ‘ ( 1 ... 𝑛 ) ) + 𝑖 ) ) |
31 |
30
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( ( ( ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 ) + 𝑖 ) gcd 𝑖 ) = ( ( ( lcm ‘ ( 1 ... 𝑛 ) ) + 𝑖 ) gcd 𝑖 ) ) |
32 |
18 31
|
breqtrrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → 1 < ( ( ( ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 ) + 𝑖 ) gcd 𝑖 ) ) |
33 |
32
|
ralrimiva |
⊢ ( 𝑛 ∈ ℕ → ∀ 𝑖 ∈ ( 2 ... 𝑛 ) 1 < ( ( ( ( 𝑥 ∈ ℕ ↦ ( lcm ‘ ( 1 ... 𝑥 ) ) ) ‘ 𝑛 ) + 𝑖 ) gcd 𝑖 ) ) |
34 |
1 17 33
|
prmgaplem8 |
⊢ ( 𝑛 ∈ ℕ → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑛 ≤ ( 𝑞 − 𝑝 ) ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) ) |
35 |
34
|
rgen |
⊢ ∀ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑛 ≤ ( 𝑞 − 𝑝 ) ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) |