| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
| 2 |
|
facmapnn |
⊢ ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) ∈ ( ℕ ↑m ℕ ) |
| 3 |
2
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) ∈ ( ℕ ↑m ℕ ) ) |
| 4 |
|
prmgaplem2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → 1 < ( ( ( ! ‘ 𝑛 ) + 𝑖 ) gcd 𝑖 ) ) |
| 5 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) = ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑛 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) ∧ 𝑥 = 𝑛 ) → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑛 ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → 𝑛 ∈ ℕ ) |
| 9 |
|
fvexd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( ! ‘ 𝑛 ) ∈ V ) |
| 10 |
5 7 8 9
|
fvmptd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) ‘ 𝑛 ) = ( ! ‘ 𝑛 ) ) |
| 11 |
10
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( ( ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) ‘ 𝑛 ) + 𝑖 ) = ( ( ! ‘ 𝑛 ) + 𝑖 ) ) |
| 12 |
11
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → ( ( ( ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) ‘ 𝑛 ) + 𝑖 ) gcd 𝑖 ) = ( ( ( ! ‘ 𝑛 ) + 𝑖 ) gcd 𝑖 ) ) |
| 13 |
4 12
|
breqtrrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑖 ∈ ( 2 ... 𝑛 ) ) → 1 < ( ( ( ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) ‘ 𝑛 ) + 𝑖 ) gcd 𝑖 ) ) |
| 14 |
13
|
ralrimiva |
⊢ ( 𝑛 ∈ ℕ → ∀ 𝑖 ∈ ( 2 ... 𝑛 ) 1 < ( ( ( ( 𝑥 ∈ ℕ ↦ ( ! ‘ 𝑥 ) ) ‘ 𝑛 ) + 𝑖 ) gcd 𝑖 ) ) |
| 15 |
1 3 14
|
prmgaplem8 |
⊢ ( 𝑛 ∈ ℕ → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑛 ≤ ( 𝑞 − 𝑝 ) ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) ) |
| 16 |
15
|
rgen |
⊢ ∀ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑛 ≤ ( 𝑞 − 𝑝 ) ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) |