Step |
Hyp |
Ref |
Expression |
1 |
|
prmgaplem7.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
prmgaplem7.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ℕ ↑m ℕ ) ) |
3 |
|
prmgaplem7.i |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 2 ... 𝑁 ) 1 < ( ( ( 𝐹 ‘ 𝑁 ) + 𝑖 ) gcd 𝑖 ) ) |
4 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
5 |
4
|
nnred |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℝ ) |
6 |
5
|
ad2antll |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → 𝑞 ∈ ℝ ) |
7 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
8 |
7
|
nnred |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑝 ∈ ℝ ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → 𝑝 ∈ ℝ ) |
11 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → 𝑁 ∈ ℝ ) |
14 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ℕ ↑m ℕ ) → 𝐹 : ℕ ⟶ ℕ ) |
15 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐹 ‘ 𝑁 ) ∈ ℕ ) |
16 |
15
|
ex |
⊢ ( 𝐹 : ℕ ⟶ ℕ → ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) ∈ ℕ ) ) |
17 |
2 14 16
|
3syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) ∈ ℕ ) ) |
18 |
1 17
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℕ ) |
19 |
18
|
nnred |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
22 |
|
1red |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → 1 ∈ ℝ ) |
23 |
21 22
|
readdcld |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → ( ( 𝐹 ‘ 𝑁 ) + 1 ) ∈ ℝ ) |
24 |
18
|
nncnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
25 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
26 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
27 |
24 25 26
|
add32d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 𝑁 ) = ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) + 1 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 𝑁 ) = ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) + 1 ) ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) → ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 𝑁 ) = ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) + 1 ) ) |
30 |
18
|
nnzd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℤ ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝐹 ‘ 𝑁 ) ∈ ℤ ) |
32 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
34 |
31 33
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) ∈ ℤ ) |
35 |
|
prmz |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
36 |
|
zltp1le |
⊢ ( ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ↔ ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) + 1 ) ≤ 𝑞 ) ) |
37 |
34 35 36
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ↔ ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) + 1 ) ≤ 𝑞 ) ) |
38 |
37
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) → ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) + 1 ) ≤ 𝑞 ) |
39 |
29 38
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) → ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 𝑁 ) ≤ 𝑞 ) |
40 |
39
|
expcom |
⊢ ( ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 → ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 𝑁 ) ≤ 𝑞 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) → ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 𝑁 ) ≤ 𝑞 ) ) |
42 |
41
|
imp |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 𝑁 ) ≤ 𝑞 ) |
43 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
44 |
43
|
a1i |
⊢ ( 𝜑 → 2 = ( 1 + 1 ) ) |
45 |
44
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) + 2 ) = ( ( 𝐹 ‘ 𝑁 ) + ( 1 + 1 ) ) ) |
46 |
24 25 25
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 1 ) = ( ( 𝐹 ‘ 𝑁 ) + ( 1 + 1 ) ) ) |
47 |
45 46
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) + 2 ) = ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 1 ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝐹 ‘ 𝑁 ) + 2 ) = ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 1 ) ) |
49 |
48
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ↔ 𝑝 < ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 1 ) ) ) |
50 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
51 |
30
|
peano2zd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) + 1 ) ∈ ℤ ) |
52 |
|
zleltp1 |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ∈ ℤ ) → ( 𝑝 ≤ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ↔ 𝑝 < ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 1 ) ) ) |
53 |
50 51 52
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≤ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ↔ 𝑝 < ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 1 ) ) ) |
54 |
53
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 < ( ( ( 𝐹 ‘ 𝑁 ) + 1 ) + 1 ) → 𝑝 ≤ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ) ) |
55 |
49 54
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) → 𝑝 ≤ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) → 𝑝 ≤ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ) ) |
57 |
56
|
com12 |
⊢ ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) → ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑝 ≤ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) → ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑝 ≤ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ) ) |
59 |
58
|
imp |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → 𝑝 ≤ ( ( 𝐹 ‘ 𝑁 ) + 1 ) ) |
60 |
6 10 13 23 42 59
|
lesub3d |
⊢ ( ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) ∧ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → 𝑁 ≤ ( 𝑞 − 𝑝 ) ) |
61 |
60
|
ex |
⊢ ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ) → ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑁 ≤ ( 𝑞 − 𝑝 ) ) ) |
62 |
61
|
3adant3 |
⊢ ( ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) → ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑁 ≤ ( 𝑞 − 𝑝 ) ) ) |
63 |
62
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) ) → 𝑁 ≤ ( 𝑞 − 𝑝 ) ) |
64 |
|
simpr3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) ) → ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) |
65 |
63 64
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) ) → ( 𝑁 ≤ ( 𝑞 − 𝑝 ) ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) ) |
66 |
1 2 3
|
prmgaplem7 |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 < ( ( 𝐹 ‘ 𝑁 ) + 2 ) ∧ ( ( 𝐹 ‘ 𝑁 ) + 𝑁 ) < 𝑞 ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) ) |
67 |
65 66
|
reximddv2 |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑁 ≤ ( 𝑞 − 𝑝 ) ∧ ∀ 𝑧 ∈ ( ( 𝑝 + 1 ) ..^ 𝑞 ) 𝑧 ∉ ℙ ) ) |