| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmgaplem7.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | prmgaplem7.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ℕ  ↑m  ℕ ) ) | 
						
							| 3 |  | prmgaplem7.i | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 2 ... 𝑁 ) 1  <  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑖 )  gcd  𝑖 ) ) | 
						
							| 4 |  | prmnn | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℕ ) | 
						
							| 5 | 4 | nnred | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℝ ) | 
						
							| 6 | 5 | ad2antll | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  𝑞  ∈  ℝ ) | 
						
							| 7 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 8 | 7 | nnred | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℝ ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑝  ∈  ℝ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  𝑝  ∈  ℝ ) | 
						
							| 11 | 1 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑁  ∈  ℝ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  𝑁  ∈  ℝ ) | 
						
							| 14 |  | elmapi | ⊢ ( 𝐹  ∈  ( ℕ  ↑m  ℕ )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 15 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝐹 : ℕ ⟶ ℕ  →  ( 𝑁  ∈  ℕ  →  ( 𝐹 ‘ 𝑁 )  ∈  ℕ ) ) | 
						
							| 17 | 2 14 16 | 3syl | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  →  ( 𝐹 ‘ 𝑁 )  ∈  ℕ ) ) | 
						
							| 18 | 1 17 | mpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 19 | 18 | nnred | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 22 |  | 1red | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  1  ∈  ℝ ) | 
						
							| 23 | 21 22 | readdcld | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  ( ( 𝐹 ‘ 𝑁 )  +  1 )  ∈  ℝ ) | 
						
							| 24 | 18 | nncnd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 25 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 26 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 27 | 24 25 26 | add32d | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  𝑁 )  =  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  +  1 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  𝑁 )  =  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  +  1 ) ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  𝑁 )  =  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  +  1 ) ) | 
						
							| 30 | 18 | nnzd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 32 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑁  ∈  ℤ ) | 
						
							| 34 | 31 33 | zaddcld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  ∈  ℤ ) | 
						
							| 35 |  | prmz | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℤ ) | 
						
							| 36 |  | zltp1le | ⊢ ( ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞  ↔  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  +  1 )  ≤  𝑞 ) ) | 
						
							| 37 | 34 35 36 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞  ↔  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  +  1 )  ≤  𝑞 ) ) | 
						
							| 38 | 37 | biimpa | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  +  1 )  ≤  𝑞 ) | 
						
							| 39 | 29 38 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  𝑁 )  ≤  𝑞 ) | 
						
							| 40 | 39 | expcom | ⊢ ( ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞  →  ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  𝑁 )  ≤  𝑞 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  →  ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  𝑁 )  ≤  𝑞 ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  𝑁 )  ≤  𝑞 ) | 
						
							| 43 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  2  =  ( 1  +  1 ) ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑁 )  +  2 )  =  ( ( 𝐹 ‘ 𝑁 )  +  ( 1  +  1 ) ) ) | 
						
							| 46 | 24 25 25 | addassd | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  1 )  =  ( ( 𝐹 ‘ 𝑁 )  +  ( 1  +  1 ) ) ) | 
						
							| 47 | 45 46 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑁 )  +  2 )  =  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  1 ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 𝐹 ‘ 𝑁 )  +  2 )  =  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  1 ) ) | 
						
							| 49 | 48 | breq2d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ↔  𝑝  <  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  1 ) ) ) | 
						
							| 50 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 51 | 30 | peano2zd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑁 )  +  1 )  ∈  ℤ ) | 
						
							| 52 |  | zleltp1 | ⊢ ( ( 𝑝  ∈  ℤ  ∧  ( ( 𝐹 ‘ 𝑁 )  +  1 )  ∈  ℤ )  →  ( 𝑝  ≤  ( ( 𝐹 ‘ 𝑁 )  +  1 )  ↔  𝑝  <  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  1 ) ) ) | 
						
							| 53 | 50 51 52 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ≤  ( ( 𝐹 ‘ 𝑁 )  +  1 )  ↔  𝑝  <  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  1 ) ) ) | 
						
							| 54 | 53 | biimprd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  <  ( ( ( 𝐹 ‘ 𝑁 )  +  1 )  +  1 )  →  𝑝  ≤  ( ( 𝐹 ‘ 𝑁 )  +  1 ) ) ) | 
						
							| 55 | 49 54 | sylbid | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  →  𝑝  ≤  ( ( 𝐹 ‘ 𝑁 )  +  1 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  →  𝑝  ≤  ( ( 𝐹 ‘ 𝑁 )  +  1 ) ) ) | 
						
							| 57 | 56 | com12 | ⊢ ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  →  ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑝  ≤  ( ( 𝐹 ‘ 𝑁 )  +  1 ) ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  →  ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑝  ≤  ( ( 𝐹 ‘ 𝑁 )  +  1 ) ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  𝑝  ≤  ( ( 𝐹 ‘ 𝑁 )  +  1 ) ) | 
						
							| 60 | 6 10 13 23 42 59 | lesub3d | ⊢ ( ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  ∧  ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ ) )  →  𝑁  ≤  ( 𝑞  −  𝑝 ) ) | 
						
							| 61 | 60 | ex | ⊢ ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞 )  →  ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑁  ≤  ( 𝑞  −  𝑝 ) ) ) | 
						
							| 62 | 61 | 3adant3 | ⊢ ( ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ )  →  ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑁  ≤  ( 𝑞  −  𝑝 ) ) ) | 
						
							| 63 | 62 | impcom | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) )  →  𝑁  ≤  ( 𝑞  −  𝑝 ) ) | 
						
							| 64 |  | simpr3 | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) )  →  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) | 
						
							| 65 | 63 64 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) )  →  ( 𝑁  ≤  ( 𝑞  −  𝑝 )  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) ) | 
						
							| 66 | 1 2 3 | prmgaplem7 | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  <  ( ( 𝐹 ‘ 𝑁 )  +  2 )  ∧  ( ( 𝐹 ‘ 𝑁 )  +  𝑁 )  <  𝑞  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) ) | 
						
							| 67 | 65 66 | reximddv2 | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑁  ≤  ( 𝑞  −  𝑝 )  ∧  ∀ 𝑧  ∈  ( ( 𝑝  +  1 ) ..^ 𝑞 ) 𝑧  ∉  ℙ ) ) |