Step |
Hyp |
Ref |
Expression |
1 |
|
prmgaplem7.n |
|
2 |
|
prmgaplem7.f |
|
3 |
|
prmgaplem7.i |
|
4 |
|
prmnn |
|
5 |
4
|
nnred |
|
6 |
5
|
ad2antll |
|
7 |
|
prmnn |
|
8 |
7
|
nnred |
|
9 |
8
|
ad2antlr |
|
10 |
9
|
adantl |
|
11 |
1
|
nnred |
|
12 |
11
|
ad2antrr |
|
13 |
12
|
adantl |
|
14 |
|
elmapi |
|
15 |
|
ffvelrn |
|
16 |
15
|
ex |
|
17 |
2 14 16
|
3syl |
|
18 |
1 17
|
mpd |
|
19 |
18
|
nnred |
|
20 |
19
|
ad2antrr |
|
21 |
20
|
adantl |
|
22 |
|
1red |
|
23 |
21 22
|
readdcld |
|
24 |
18
|
nncnd |
|
25 |
|
1cnd |
|
26 |
1
|
nncnd |
|
27 |
24 25 26
|
add32d |
|
28 |
27
|
adantr |
|
29 |
28
|
ad2antrr |
|
30 |
18
|
nnzd |
|
31 |
30
|
adantr |
|
32 |
1
|
nnzd |
|
33 |
32
|
adantr |
|
34 |
31 33
|
zaddcld |
|
35 |
|
prmz |
|
36 |
|
zltp1le |
|
37 |
34 35 36
|
syl2an |
|
38 |
37
|
biimpa |
|
39 |
29 38
|
eqbrtrd |
|
40 |
39
|
expcom |
|
41 |
40
|
adantl |
|
42 |
41
|
imp |
|
43 |
|
df-2 |
|
44 |
43
|
a1i |
|
45 |
44
|
oveq2d |
|
46 |
24 25 25
|
addassd |
|
47 |
45 46
|
eqtr4d |
|
48 |
47
|
adantr |
|
49 |
48
|
breq2d |
|
50 |
|
prmz |
|
51 |
30
|
peano2zd |
|
52 |
|
zleltp1 |
|
53 |
50 51 52
|
syl2anr |
|
54 |
53
|
biimprd |
|
55 |
49 54
|
sylbid |
|
56 |
55
|
adantr |
|
57 |
56
|
com12 |
|
58 |
57
|
adantr |
|
59 |
58
|
imp |
|
60 |
6 10 13 23 42 59
|
lesub3d |
|
61 |
60
|
ex |
|
62 |
61
|
3adant3 |
|
63 |
62
|
impcom |
|
64 |
|
simpr3 |
|
65 |
63 64
|
jca |
|
66 |
1 2 3
|
prmgaplem7 |
|
67 |
65 66
|
reximddv2 |
|