Metamath Proof Explorer


Theorem prmgaplem8

Description: Lemma for prmgap . (Contributed by AV, 13-Aug-2020)

Ref Expression
Hypotheses prmgaplem7.n φN
prmgaplem7.f φF
prmgaplem7.i φi2N1<FN+igcdi
Assertion prmgaplem8 φpqNqpzp+1..^qz

Proof

Step Hyp Ref Expression
1 prmgaplem7.n φN
2 prmgaplem7.f φF
3 prmgaplem7.i φi2N1<FN+igcdi
4 prmnn qq
5 4 nnred qq
6 5 ad2antll p<FN+2FN+N<qφpqq
7 prmnn pp
8 7 nnred pp
9 8 ad2antlr φpqp
10 9 adantl p<FN+2FN+N<qφpqp
11 1 nnred φN
12 11 ad2antrr φpqN
13 12 adantl p<FN+2FN+N<qφpqN
14 elmapi FF:
15 ffvelcdm F:NFN
16 15 ex F:NFN
17 2 14 16 3syl φNFN
18 1 17 mpd φFN
19 18 nnred φFN
20 19 ad2antrr φpqFN
21 20 adantl p<FN+2FN+N<qφpqFN
22 1red p<FN+2FN+N<qφpq1
23 21 22 readdcld p<FN+2FN+N<qφpqFN+1
24 18 nncnd φFN
25 1cnd φ1
26 1 nncnd φN
27 24 25 26 add32d φFN+1+N=FN+N+1
28 27 adantr φpFN+1+N=FN+N+1
29 28 ad2antrr φpqFN+N<qFN+1+N=FN+N+1
30 18 nnzd φFN
31 30 adantr φpFN
32 1 nnzd φN
33 32 adantr φpN
34 31 33 zaddcld φpFN+N
35 prmz qq
36 zltp1le FN+NqFN+N<qFN+N+1q
37 34 35 36 syl2an φpqFN+N<qFN+N+1q
38 37 biimpa φpqFN+N<qFN+N+1q
39 29 38 eqbrtrd φpqFN+N<qFN+1+Nq
40 39 expcom FN+N<qφpqFN+1+Nq
41 40 adantl p<FN+2FN+N<qφpqFN+1+Nq
42 41 imp p<FN+2FN+N<qφpqFN+1+Nq
43 df-2 2=1+1
44 43 a1i φ2=1+1
45 44 oveq2d φFN+2=FN+1+1
46 24 25 25 addassd φFN+1+1=FN+1+1
47 45 46 eqtr4d φFN+2=FN+1+1
48 47 adantr φpFN+2=FN+1+1
49 48 breq2d φpp<FN+2p<FN+1+1
50 prmz pp
51 30 peano2zd φFN+1
52 zleltp1 pFN+1pFN+1p<FN+1+1
53 50 51 52 syl2anr φppFN+1p<FN+1+1
54 53 biimprd φpp<FN+1+1pFN+1
55 49 54 sylbid φpp<FN+2pFN+1
56 55 adantr φpqp<FN+2pFN+1
57 56 com12 p<FN+2φpqpFN+1
58 57 adantr p<FN+2FN+N<qφpqpFN+1
59 58 imp p<FN+2FN+N<qφpqpFN+1
60 6 10 13 23 42 59 lesub3d p<FN+2FN+N<qφpqNqp
61 60 ex p<FN+2FN+N<qφpqNqp
62 61 3adant3 p<FN+2FN+N<qzp+1..^qzφpqNqp
63 62 impcom φpqp<FN+2FN+N<qzp+1..^qzNqp
64 simpr3 φpqp<FN+2FN+N<qzp+1..^qzzp+1..^qz
65 63 64 jca φpqp<FN+2FN+N<qzp+1..^qzNqpzp+1..^qz
66 1 2 3 prmgaplem7 φpqp<FN+2FN+N<qzp+1..^qz
67 65 66 reximddv2 φpqNqpzp+1..^qz