Description: Lemma for prmgap . (Contributed by AV, 13-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmgaplem7.n | |
|
prmgaplem7.f | |
||
prmgaplem7.i | |
||
Assertion | prmgaplem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmgaplem7.n | |
|
2 | prmgaplem7.f | |
|
3 | prmgaplem7.i | |
|
4 | prmnn | |
|
5 | 4 | nnred | |
6 | 5 | ad2antll | |
7 | prmnn | |
|
8 | 7 | nnred | |
9 | 8 | ad2antlr | |
10 | 9 | adantl | |
11 | 1 | nnred | |
12 | 11 | ad2antrr | |
13 | 12 | adantl | |
14 | elmapi | |
|
15 | ffvelcdm | |
|
16 | 15 | ex | |
17 | 2 14 16 | 3syl | |
18 | 1 17 | mpd | |
19 | 18 | nnred | |
20 | 19 | ad2antrr | |
21 | 20 | adantl | |
22 | 1red | |
|
23 | 21 22 | readdcld | |
24 | 18 | nncnd | |
25 | 1cnd | |
|
26 | 1 | nncnd | |
27 | 24 25 26 | add32d | |
28 | 27 | adantr | |
29 | 28 | ad2antrr | |
30 | 18 | nnzd | |
31 | 30 | adantr | |
32 | 1 | nnzd | |
33 | 32 | adantr | |
34 | 31 33 | zaddcld | |
35 | prmz | |
|
36 | zltp1le | |
|
37 | 34 35 36 | syl2an | |
38 | 37 | biimpa | |
39 | 29 38 | eqbrtrd | |
40 | 39 | expcom | |
41 | 40 | adantl | |
42 | 41 | imp | |
43 | df-2 | |
|
44 | 43 | a1i | |
45 | 44 | oveq2d | |
46 | 24 25 25 | addassd | |
47 | 45 46 | eqtr4d | |
48 | 47 | adantr | |
49 | 48 | breq2d | |
50 | prmz | |
|
51 | 30 | peano2zd | |
52 | zleltp1 | |
|
53 | 50 51 52 | syl2anr | |
54 | 53 | biimprd | |
55 | 49 54 | sylbid | |
56 | 55 | adantr | |
57 | 56 | com12 | |
58 | 57 | adantr | |
59 | 58 | imp | |
60 | 6 10 13 23 42 59 | lesub3d | |
61 | 60 | ex | |
62 | 61 | 3adant3 | |
63 | 62 | impcom | |
64 | simpr3 | |
|
65 | 63 64 | jca | |
66 | 1 2 3 | prmgaplem7 | |
67 | 65 66 | reximddv2 | |