| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmgaplem7.n |
|- ( ph -> N e. NN ) |
| 2 |
|
prmgaplem7.f |
|- ( ph -> F e. ( NN ^m NN ) ) |
| 3 |
|
prmgaplem7.i |
|- ( ph -> A. i e. ( 2 ... N ) 1 < ( ( ( F ` N ) + i ) gcd i ) ) |
| 4 |
|
prmnn |
|- ( q e. Prime -> q e. NN ) |
| 5 |
4
|
nnred |
|- ( q e. Prime -> q e. RR ) |
| 6 |
5
|
ad2antll |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> q e. RR ) |
| 7 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 8 |
7
|
nnred |
|- ( p e. Prime -> p e. RR ) |
| 9 |
8
|
ad2antlr |
|- ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> p e. RR ) |
| 10 |
9
|
adantl |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> p e. RR ) |
| 11 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> N e. RR ) |
| 13 |
12
|
adantl |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> N e. RR ) |
| 14 |
|
elmapi |
|- ( F e. ( NN ^m NN ) -> F : NN --> NN ) |
| 15 |
|
ffvelcdm |
|- ( ( F : NN --> NN /\ N e. NN ) -> ( F ` N ) e. NN ) |
| 16 |
15
|
ex |
|- ( F : NN --> NN -> ( N e. NN -> ( F ` N ) e. NN ) ) |
| 17 |
2 14 16
|
3syl |
|- ( ph -> ( N e. NN -> ( F ` N ) e. NN ) ) |
| 18 |
1 17
|
mpd |
|- ( ph -> ( F ` N ) e. NN ) |
| 19 |
18
|
nnred |
|- ( ph -> ( F ` N ) e. RR ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( F ` N ) e. RR ) |
| 21 |
20
|
adantl |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> ( F ` N ) e. RR ) |
| 22 |
|
1red |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> 1 e. RR ) |
| 23 |
21 22
|
readdcld |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> ( ( F ` N ) + 1 ) e. RR ) |
| 24 |
18
|
nncnd |
|- ( ph -> ( F ` N ) e. CC ) |
| 25 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 26 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 27 |
24 25 26
|
add32d |
|- ( ph -> ( ( ( F ` N ) + 1 ) + N ) = ( ( ( F ` N ) + N ) + 1 ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ( ( F ` N ) + 1 ) + N ) = ( ( ( F ` N ) + N ) + 1 ) ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( F ` N ) + 1 ) + N ) = ( ( ( F ` N ) + N ) + 1 ) ) |
| 30 |
18
|
nnzd |
|- ( ph -> ( F ` N ) e. ZZ ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( F ` N ) e. ZZ ) |
| 32 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ p e. Prime ) -> N e. ZZ ) |
| 34 |
31 33
|
zaddcld |
|- ( ( ph /\ p e. Prime ) -> ( ( F ` N ) + N ) e. ZZ ) |
| 35 |
|
prmz |
|- ( q e. Prime -> q e. ZZ ) |
| 36 |
|
zltp1le |
|- ( ( ( ( F ` N ) + N ) e. ZZ /\ q e. ZZ ) -> ( ( ( F ` N ) + N ) < q <-> ( ( ( F ` N ) + N ) + 1 ) <_ q ) ) |
| 37 |
34 35 36
|
syl2an |
|- ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( ( ( F ` N ) + N ) < q <-> ( ( ( F ` N ) + N ) + 1 ) <_ q ) ) |
| 38 |
37
|
biimpa |
|- ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( F ` N ) + N ) + 1 ) <_ q ) |
| 39 |
29 38
|
eqbrtrd |
|- ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( F ` N ) + 1 ) + N ) <_ q ) |
| 40 |
39
|
expcom |
|- ( ( ( F ` N ) + N ) < q -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( ( ( F ` N ) + 1 ) + N ) <_ q ) ) |
| 41 |
40
|
adantl |
|- ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( ( ( F ` N ) + 1 ) + N ) <_ q ) ) |
| 42 |
41
|
imp |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> ( ( ( F ` N ) + 1 ) + N ) <_ q ) |
| 43 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 44 |
43
|
a1i |
|- ( ph -> 2 = ( 1 + 1 ) ) |
| 45 |
44
|
oveq2d |
|- ( ph -> ( ( F ` N ) + 2 ) = ( ( F ` N ) + ( 1 + 1 ) ) ) |
| 46 |
24 25 25
|
addassd |
|- ( ph -> ( ( ( F ` N ) + 1 ) + 1 ) = ( ( F ` N ) + ( 1 + 1 ) ) ) |
| 47 |
45 46
|
eqtr4d |
|- ( ph -> ( ( F ` N ) + 2 ) = ( ( ( F ` N ) + 1 ) + 1 ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ( F ` N ) + 2 ) = ( ( ( F ` N ) + 1 ) + 1 ) ) |
| 49 |
48
|
breq2d |
|- ( ( ph /\ p e. Prime ) -> ( p < ( ( F ` N ) + 2 ) <-> p < ( ( ( F ` N ) + 1 ) + 1 ) ) ) |
| 50 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 51 |
30
|
peano2zd |
|- ( ph -> ( ( F ` N ) + 1 ) e. ZZ ) |
| 52 |
|
zleltp1 |
|- ( ( p e. ZZ /\ ( ( F ` N ) + 1 ) e. ZZ ) -> ( p <_ ( ( F ` N ) + 1 ) <-> p < ( ( ( F ` N ) + 1 ) + 1 ) ) ) |
| 53 |
50 51 52
|
syl2anr |
|- ( ( ph /\ p e. Prime ) -> ( p <_ ( ( F ` N ) + 1 ) <-> p < ( ( ( F ` N ) + 1 ) + 1 ) ) ) |
| 54 |
53
|
biimprd |
|- ( ( ph /\ p e. Prime ) -> ( p < ( ( ( F ` N ) + 1 ) + 1 ) -> p <_ ( ( F ` N ) + 1 ) ) ) |
| 55 |
49 54
|
sylbid |
|- ( ( ph /\ p e. Prime ) -> ( p < ( ( F ` N ) + 2 ) -> p <_ ( ( F ` N ) + 1 ) ) ) |
| 56 |
55
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( p < ( ( F ` N ) + 2 ) -> p <_ ( ( F ` N ) + 1 ) ) ) |
| 57 |
56
|
com12 |
|- ( p < ( ( F ` N ) + 2 ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> p <_ ( ( F ` N ) + 1 ) ) ) |
| 58 |
57
|
adantr |
|- ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> p <_ ( ( F ` N ) + 1 ) ) ) |
| 59 |
58
|
imp |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> p <_ ( ( F ` N ) + 1 ) ) |
| 60 |
6 10 13 23 42 59
|
lesub3d |
|- ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> N <_ ( q - p ) ) |
| 61 |
60
|
ex |
|- ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> N <_ ( q - p ) ) ) |
| 62 |
61
|
3adant3 |
|- ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> N <_ ( q - p ) ) ) |
| 63 |
62
|
impcom |
|- ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) -> N <_ ( q - p ) ) |
| 64 |
|
simpr3 |
|- ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) -> A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) |
| 65 |
63 64
|
jca |
|- ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) -> ( N <_ ( q - p ) /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) |
| 66 |
1 2 3
|
prmgaplem7 |
|- ( ph -> E. p e. Prime E. q e. Prime ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) |
| 67 |
65 66
|
reximddv2 |
|- ( ph -> E. p e. Prime E. q e. Prime ( N <_ ( q - p ) /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) |