| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmgaplem7.n |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | prmgaplem7.f |  |-  ( ph -> F e. ( NN ^m NN ) ) | 
						
							| 3 |  | prmgaplem7.i |  |-  ( ph -> A. i e. ( 2 ... N ) 1 < ( ( ( F ` N ) + i ) gcd i ) ) | 
						
							| 4 |  | prmnn |  |-  ( q e. Prime -> q e. NN ) | 
						
							| 5 | 4 | nnred |  |-  ( q e. Prime -> q e. RR ) | 
						
							| 6 | 5 | ad2antll |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> q e. RR ) | 
						
							| 7 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 8 | 7 | nnred |  |-  ( p e. Prime -> p e. RR ) | 
						
							| 9 | 8 | ad2antlr |  |-  ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> p e. RR ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> p e. RR ) | 
						
							| 11 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> N e. RR ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> N e. RR ) | 
						
							| 14 |  | elmapi |  |-  ( F e. ( NN ^m NN ) -> F : NN --> NN ) | 
						
							| 15 |  | ffvelcdm |  |-  ( ( F : NN --> NN /\ N e. NN ) -> ( F ` N ) e. NN ) | 
						
							| 16 | 15 | ex |  |-  ( F : NN --> NN -> ( N e. NN -> ( F ` N ) e. NN ) ) | 
						
							| 17 | 2 14 16 | 3syl |  |-  ( ph -> ( N e. NN -> ( F ` N ) e. NN ) ) | 
						
							| 18 | 1 17 | mpd |  |-  ( ph -> ( F ` N ) e. NN ) | 
						
							| 19 | 18 | nnred |  |-  ( ph -> ( F ` N ) e. RR ) | 
						
							| 20 | 19 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( F ` N ) e. RR ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> ( F ` N ) e. RR ) | 
						
							| 22 |  | 1red |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> 1 e. RR ) | 
						
							| 23 | 21 22 | readdcld |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> ( ( F ` N ) + 1 ) e. RR ) | 
						
							| 24 | 18 | nncnd |  |-  ( ph -> ( F ` N ) e. CC ) | 
						
							| 25 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 26 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 27 | 24 25 26 | add32d |  |-  ( ph -> ( ( ( F ` N ) + 1 ) + N ) = ( ( ( F ` N ) + N ) + 1 ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ p e. Prime ) -> ( ( ( F ` N ) + 1 ) + N ) = ( ( ( F ` N ) + N ) + 1 ) ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( F ` N ) + 1 ) + N ) = ( ( ( F ` N ) + N ) + 1 ) ) | 
						
							| 30 | 18 | nnzd |  |-  ( ph -> ( F ` N ) e. ZZ ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ p e. Prime ) -> ( F ` N ) e. ZZ ) | 
						
							| 32 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ p e. Prime ) -> N e. ZZ ) | 
						
							| 34 | 31 33 | zaddcld |  |-  ( ( ph /\ p e. Prime ) -> ( ( F ` N ) + N ) e. ZZ ) | 
						
							| 35 |  | prmz |  |-  ( q e. Prime -> q e. ZZ ) | 
						
							| 36 |  | zltp1le |  |-  ( ( ( ( F ` N ) + N ) e. ZZ /\ q e. ZZ ) -> ( ( ( F ` N ) + N ) < q <-> ( ( ( F ` N ) + N ) + 1 ) <_ q ) ) | 
						
							| 37 | 34 35 36 | syl2an |  |-  ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( ( ( F ` N ) + N ) < q <-> ( ( ( F ` N ) + N ) + 1 ) <_ q ) ) | 
						
							| 38 | 37 | biimpa |  |-  ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( F ` N ) + N ) + 1 ) <_ q ) | 
						
							| 39 | 29 38 | eqbrtrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( F ` N ) + 1 ) + N ) <_ q ) | 
						
							| 40 | 39 | expcom |  |-  ( ( ( F ` N ) + N ) < q -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( ( ( F ` N ) + 1 ) + N ) <_ q ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( ( ( F ` N ) + 1 ) + N ) <_ q ) ) | 
						
							| 42 | 41 | imp |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> ( ( ( F ` N ) + 1 ) + N ) <_ q ) | 
						
							| 43 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 44 | 43 | a1i |  |-  ( ph -> 2 = ( 1 + 1 ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( ph -> ( ( F ` N ) + 2 ) = ( ( F ` N ) + ( 1 + 1 ) ) ) | 
						
							| 46 | 24 25 25 | addassd |  |-  ( ph -> ( ( ( F ` N ) + 1 ) + 1 ) = ( ( F ` N ) + ( 1 + 1 ) ) ) | 
						
							| 47 | 45 46 | eqtr4d |  |-  ( ph -> ( ( F ` N ) + 2 ) = ( ( ( F ` N ) + 1 ) + 1 ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ p e. Prime ) -> ( ( F ` N ) + 2 ) = ( ( ( F ` N ) + 1 ) + 1 ) ) | 
						
							| 49 | 48 | breq2d |  |-  ( ( ph /\ p e. Prime ) -> ( p < ( ( F ` N ) + 2 ) <-> p < ( ( ( F ` N ) + 1 ) + 1 ) ) ) | 
						
							| 50 |  | prmz |  |-  ( p e. Prime -> p e. ZZ ) | 
						
							| 51 | 30 | peano2zd |  |-  ( ph -> ( ( F ` N ) + 1 ) e. ZZ ) | 
						
							| 52 |  | zleltp1 |  |-  ( ( p e. ZZ /\ ( ( F ` N ) + 1 ) e. ZZ ) -> ( p <_ ( ( F ` N ) + 1 ) <-> p < ( ( ( F ` N ) + 1 ) + 1 ) ) ) | 
						
							| 53 | 50 51 52 | syl2anr |  |-  ( ( ph /\ p e. Prime ) -> ( p <_ ( ( F ` N ) + 1 ) <-> p < ( ( ( F ` N ) + 1 ) + 1 ) ) ) | 
						
							| 54 | 53 | biimprd |  |-  ( ( ph /\ p e. Prime ) -> ( p < ( ( ( F ` N ) + 1 ) + 1 ) -> p <_ ( ( F ` N ) + 1 ) ) ) | 
						
							| 55 | 49 54 | sylbid |  |-  ( ( ph /\ p e. Prime ) -> ( p < ( ( F ` N ) + 2 ) -> p <_ ( ( F ` N ) + 1 ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> ( p < ( ( F ` N ) + 2 ) -> p <_ ( ( F ` N ) + 1 ) ) ) | 
						
							| 57 | 56 | com12 |  |-  ( p < ( ( F ` N ) + 2 ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> p <_ ( ( F ` N ) + 1 ) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> p <_ ( ( F ` N ) + 1 ) ) ) | 
						
							| 59 | 58 | imp |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> p <_ ( ( F ` N ) + 1 ) ) | 
						
							| 60 | 6 10 13 23 42 59 | lesub3d |  |-  ( ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) /\ ( ( ph /\ p e. Prime ) /\ q e. Prime ) ) -> N <_ ( q - p ) ) | 
						
							| 61 | 60 | ex |  |-  ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> N <_ ( q - p ) ) ) | 
						
							| 62 | 61 | 3adant3 |  |-  ( ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) -> ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) -> N <_ ( q - p ) ) ) | 
						
							| 63 | 62 | impcom |  |-  ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) -> N <_ ( q - p ) ) | 
						
							| 64 |  | simpr3 |  |-  ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) -> A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) | 
						
							| 65 | 63 64 | jca |  |-  ( ( ( ( ph /\ p e. Prime ) /\ q e. Prime ) /\ ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) -> ( N <_ ( q - p ) /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) | 
						
							| 66 | 1 2 3 | prmgaplem7 |  |-  ( ph -> E. p e. Prime E. q e. Prime ( p < ( ( F ` N ) + 2 ) /\ ( ( F ` N ) + N ) < q /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) | 
						
							| 67 | 65 66 | reximddv2 |  |-  ( ph -> E. p e. Prime E. q e. Prime ( N <_ ( q - p ) /\ A. z e. ( ( p + 1 ) ..^ q ) z e/ Prime ) ) |