| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzuz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ↔  𝐼  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 ) ) ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖  ∥  𝐼  ↔  𝐼  ∥  𝐼 ) ) | 
						
							| 5 | 3 4 | anbi12d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑖  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∧  𝑖  ∥  𝐼 )  ↔  ( 𝐼  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∧  𝐼  ∥  𝐼 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑖  =  𝐼 )  →  ( ( 𝑖  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∧  𝑖  ∥  𝐼 )  ↔  ( 𝐼  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∧  𝐼  ∥  𝐼 ) ) ) | 
						
							| 7 |  | prmgaplcmlem1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 ) ) | 
						
							| 8 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℤ ) | 
						
							| 9 |  | iddvds | ⊢ ( 𝐼  ∈  ℤ  →  𝐼  ∥  𝐼 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∥  𝐼 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∥  𝐼 ) | 
						
							| 12 | 7 11 | jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( 𝐼  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∧  𝐼  ∥  𝐼 ) ) | 
						
							| 13 | 2 6 12 | rspcedvd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ∃ 𝑖  ∈  ( ℤ≥ ‘ 2 ) ( 𝑖  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∧  𝑖  ∥  𝐼 ) ) | 
						
							| 14 |  | fzssz | ⊢ ( 1 ... 𝑁 )  ⊆  ℤ | 
						
							| 15 |  | fzfid | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 16 |  | 0nelfz1 | ⊢ 0  ∉  ( 1 ... 𝑁 ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  ∉  ( 1 ... 𝑁 ) ) | 
						
							| 18 |  | lcmfn0cl | ⊢ ( ( ( 1 ... 𝑁 )  ⊆  ℤ  ∧  ( 1 ... 𝑁 )  ∈  Fin  ∧  0  ∉  ( 1 ... 𝑁 ) )  →  ( lcm ‘ ( 1 ... 𝑁 ) )  ∈  ℕ ) | 
						
							| 19 | 14 15 17 18 | mp3an2i | ⊢ ( 𝑁  ∈  ℕ  →  ( lcm ‘ ( 1 ... 𝑁 ) )  ∈  ℕ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( lcm ‘ ( 1 ... 𝑁 ) )  ∈  ℕ ) | 
						
							| 21 |  | eluz2nn | ⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 2 )  →  𝐼  ∈  ℕ ) | 
						
							| 22 | 1 21 | syl | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℕ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∈  ℕ ) | 
						
							| 24 | 20 23 | nnaddcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∈  ℕ ) | 
						
							| 25 |  | ncoprmgcdgt1b | ⊢ ( ( ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∈  ℕ  ∧  𝐼  ∈  ℕ )  →  ( ∃ 𝑖  ∈  ( ℤ≥ ‘ 2 ) ( 𝑖  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∧  𝑖  ∥  𝐼 )  ↔  1  <  ( ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  gcd  𝐼 ) ) ) | 
						
							| 26 | 24 23 25 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( ∃ 𝑖  ∈  ( ℤ≥ ‘ 2 ) ( 𝑖  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  ∧  𝑖  ∥  𝐼 )  ↔  1  <  ( ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  gcd  𝐼 ) ) ) | 
						
							| 27 | 13 26 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  1  <  ( ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 )  gcd  𝐼 ) ) |