Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
breq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ↔ 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ) ) |
4 |
|
breq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∥ 𝐼 ↔ 𝐼 ∥ 𝐼 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ↔ ( 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∧ 𝐼 ∥ 𝐼 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑖 = 𝐼 ) → ( ( 𝑖 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ↔ ( 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∧ 𝐼 ∥ 𝐼 ) ) ) |
7 |
|
prmgaplcmlem1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ) |
8 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ ) |
9 |
|
iddvds |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∥ 𝐼 ) |
10 |
8 9
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∥ 𝐼 ) |
11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ 𝐼 ) |
12 |
7 11
|
jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∧ 𝐼 ∥ 𝐼 ) ) |
13 |
2 6 12
|
rspcedvd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ) |
14 |
|
fzssz |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
15 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) |
16 |
|
0nelfz1 |
⊢ 0 ∉ ( 1 ... 𝑁 ) |
17 |
16
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 ∉ ( 1 ... 𝑁 ) ) |
18 |
|
lcmfn0cl |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
19 |
14 15 17 18
|
mp3an2i |
⊢ ( 𝑁 ∈ ℕ → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
20 |
19
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
21 |
|
eluz2nn |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → 𝐼 ∈ ℕ ) |
22 |
1 21
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℕ ) |
23 |
22
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℕ ) |
24 |
20 23
|
nnaddcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∈ ℕ ) |
25 |
|
ncoprmgcdgt1b |
⊢ ( ( ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∈ ℕ ∧ 𝐼 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ↔ 1 < ( ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) gcd 𝐼 ) ) ) |
26 |
24 23 25
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ∧ 𝑖 ∥ 𝐼 ) ↔ 1 < ( ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) gcd 𝐼 ) ) ) |
27 |
13 26
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 1 < ( ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) gcd 𝐼 ) ) |