Metamath Proof Explorer


Theorem prmgaplcmlem2

Description: Lemma for prmgaplcm : The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020) (Revised by AV, 27-Aug-2020)

Ref Expression
Assertion prmgaplcmlem2 N I 2 N 1 < lcm _ 1 N + I gcd I

Proof

Step Hyp Ref Expression
1 elfzuz I 2 N I 2
2 1 adantl N I 2 N I 2
3 breq1 i = I i lcm _ 1 N + I I lcm _ 1 N + I
4 breq1 i = I i I I I
5 3 4 anbi12d i = I i lcm _ 1 N + I i I I lcm _ 1 N + I I I
6 5 adantl N I 2 N i = I i lcm _ 1 N + I i I I lcm _ 1 N + I I I
7 prmgaplcmlem1 N I 2 N I lcm _ 1 N + I
8 elfzelz I 2 N I
9 iddvds I I I
10 8 9 syl I 2 N I I
11 10 adantl N I 2 N I I
12 7 11 jca N I 2 N I lcm _ 1 N + I I I
13 2 6 12 rspcedvd N I 2 N i 2 i lcm _ 1 N + I i I
14 fzssz 1 N
15 fzfid N 1 N Fin
16 0nelfz1 0 1 N
17 16 a1i N 0 1 N
18 lcmfn0cl 1 N 1 N Fin 0 1 N lcm _ 1 N
19 14 15 17 18 mp3an2i N lcm _ 1 N
20 19 adantr N I 2 N lcm _ 1 N
21 eluz2nn I 2 I
22 1 21 syl I 2 N I
23 22 adantl N I 2 N I
24 20 23 nnaddcld N I 2 N lcm _ 1 N + I
25 ncoprmgcdgt1b lcm _ 1 N + I I i 2 i lcm _ 1 N + I i I 1 < lcm _ 1 N + I gcd I
26 24 23 25 syl2anc N I 2 N i 2 i lcm _ 1 N + I i I 1 < lcm _ 1 N + I gcd I
27 13 26 mpbid N I 2 N 1 < lcm _ 1 N + I gcd I