Metamath Proof Explorer


Theorem prmgaplcmlem1

Description: Lemma for prmgaplcm : The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number is divisible by that integer. (Contributed by AV, 14-Aug-2020) (Revised by AV, 27-Aug-2020)

Ref Expression
Assertion prmgaplcmlem1 N I 2 N I lcm _ 1 N + I

Proof

Step Hyp Ref Expression
1 elfzelz I 2 N I
2 1 adantl N I 2 N I
3 fzssz 1 N
4 fzfi 1 N Fin
5 3 4 pm3.2i 1 N 1 N Fin
6 lcmfcl 1 N 1 N Fin lcm _ 1 N 0
7 6 nn0zd 1 N 1 N Fin lcm _ 1 N
8 5 7 mp1i N I 2 N lcm _ 1 N
9 breq1 x = I x lcm _ 1 N I lcm _ 1 N
10 dvdslcmf 1 N 1 N Fin x 1 N x lcm _ 1 N
11 5 10 mp1i N I 2 N x 1 N x lcm _ 1 N
12 2eluzge1 2 1
13 fzss1 2 1 2 N 1 N
14 12 13 mp1i N 2 N 1 N
15 14 sselda N I 2 N I 1 N
16 9 11 15 rspcdva N I 2 N I lcm _ 1 N
17 iddvds I I I
18 1 17 syl I 2 N I I
19 18 adantl N I 2 N I I
20 2 8 2 16 19 dvds2addd N I 2 N I lcm _ 1 N + I