| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℤ ) |
| 3 |
|
fzssz |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
| 4 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
| 5 |
3 4
|
pm3.2i |
⊢ ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) |
| 6 |
|
lcmfcl |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ0 ) |
| 7 |
6
|
nn0zd |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℤ ) |
| 8 |
5 7
|
mp1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℤ ) |
| 9 |
|
breq1 |
⊢ ( 𝑥 = 𝐼 → ( 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ↔ 𝐼 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 10 |
|
dvdslcmf |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 11 |
5 10
|
mp1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 12 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
| 13 |
|
fzss1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
| 14 |
12 13
|
mp1i |
⊢ ( 𝑁 ∈ ℕ → ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
| 15 |
14
|
sselda |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
| 16 |
9 11 15
|
rspcdva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 17 |
|
iddvds |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∥ 𝐼 ) |
| 18 |
1 17
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∥ 𝐼 ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ 𝐼 ) |
| 20 |
2 8 2 16 19
|
dvds2addd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ) |