Metamath Proof Explorer


Theorem prmgaplcmlem1

Description: Lemma for prmgaplcm : The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number is divisible by that integer. (Contributed by AV, 14-Aug-2020) (Revised by AV, 27-Aug-2020)

Ref Expression
Assertion prmgaplcmlem1 ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) )

Proof

Step Hyp Ref Expression
1 elfzelz ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ )
2 1 adantl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℤ )
3 fzssz ( 1 ... 𝑁 ) ⊆ ℤ
4 fzfi ( 1 ... 𝑁 ) ∈ Fin
5 3 4 pm3.2i ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin )
6 lcmfcl ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ0 )
7 6 nn0zd ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℤ )
8 5 7 mp1i ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℤ )
9 breq1 ( 𝑥 = 𝐼 → ( 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ↔ 𝐼 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
10 dvdslcmf ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) )
11 5 10 mp1i ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) )
12 2eluzge1 2 ∈ ( ℤ ‘ 1 )
13 fzss1 ( 2 ∈ ( ℤ ‘ 1 ) → ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
14 12 13 mp1i ( 𝑁 ∈ ℕ → ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
15 14 sselda ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ( 1 ... 𝑁 ) )
16 9 11 15 rspcdva ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) )
17 iddvds ( 𝐼 ∈ ℤ → 𝐼𝐼 )
18 1 17 syl ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼𝐼 )
19 18 adantl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼𝐼 )
20 2 8 2 16 19 dvds2addd ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) )