Step |
Hyp |
Ref |
Expression |
1 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ ) |
2 |
1
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℤ ) |
3 |
|
fzssz |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
4 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
5 |
3 4
|
pm3.2i |
⊢ ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) |
6 |
|
lcmfcl |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ0 ) |
7 |
6
|
nn0zd |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℤ ) |
8 |
5 7
|
mp1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℤ ) |
9 |
|
breq1 |
⊢ ( 𝑥 = 𝐼 → ( 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ↔ 𝐼 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
10 |
|
dvdslcmf |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
11 |
5 10
|
mp1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑥 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
12 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
13 |
|
fzss1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
14 |
12 13
|
mp1i |
⊢ ( 𝑁 ∈ ℕ → ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
15 |
14
|
sselda |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
16 |
9 11 15
|
rspcdva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
17 |
|
iddvds |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∥ 𝐼 ) |
18 |
1 17
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∥ 𝐼 ) |
19 |
18
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ 𝐼 ) |
20 |
2 8 2 16 19
|
dvds2addd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∥ ( ( lcm ‘ ( 1 ... 𝑁 ) ) + 𝐼 ) ) |