| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℤ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∈  ℤ ) | 
						
							| 3 |  | fzssz | ⊢ ( 1 ... 𝑁 )  ⊆  ℤ | 
						
							| 4 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 5 | 3 4 | pm3.2i | ⊢ ( ( 1 ... 𝑁 )  ⊆  ℤ  ∧  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 6 |  | lcmfcl | ⊢ ( ( ( 1 ... 𝑁 )  ⊆  ℤ  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( lcm ‘ ( 1 ... 𝑁 ) )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0zd | ⊢ ( ( ( 1 ... 𝑁 )  ⊆  ℤ  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( lcm ‘ ( 1 ... 𝑁 ) )  ∈  ℤ ) | 
						
							| 8 | 5 7 | mp1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( lcm ‘ ( 1 ... 𝑁 ) )  ∈  ℤ ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑥  ∥  ( lcm ‘ ( 1 ... 𝑁 ) )  ↔  𝐼  ∥  ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 10 |  | dvdslcmf | ⊢ ( ( ( 1 ... 𝑁 )  ⊆  ℤ  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ∀ 𝑥  ∈  ( 1 ... 𝑁 ) 𝑥  ∥  ( lcm ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 11 | 5 10 | mp1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ∀ 𝑥  ∈  ( 1 ... 𝑁 ) 𝑥  ∥  ( lcm ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 12 |  | 2eluzge1 | ⊢ 2  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 13 |  | fzss1 | ⊢ ( 2  ∈  ( ℤ≥ ‘ 1 )  →  ( 2 ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 14 | 12 13 | mp1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 15 | 14 | sselda | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 16 | 9 11 15 | rspcdva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∥  ( lcm ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 17 |  | iddvds | ⊢ ( 𝐼  ∈  ℤ  →  𝐼  ∥  𝐼 ) | 
						
							| 18 | 1 17 | syl | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∥  𝐼 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∥  𝐼 ) | 
						
							| 20 | 2 8 2 16 19 | dvds2addd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∥  ( ( lcm ‘ ( 1 ... 𝑁 ) )  +  𝐼 ) ) |