Step |
Hyp |
Ref |
Expression |
1 |
|
prmgaplem3.a |
⊢ 𝐴 = { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } |
2 |
|
ssrab2 |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ⊆ ℙ |
3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ⊆ ℙ ) |
4 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
5 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
6 |
4 5
|
sstri |
⊢ ℙ ⊆ ℝ |
7 |
3 6
|
sstrdi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ⊆ ℝ ) |
8 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
9 |
|
breq1 |
⊢ ( 𝑝 = 𝑖 → ( 𝑝 < 𝑁 ↔ 𝑖 < 𝑁 ) ) |
10 |
9
|
elrab |
⊢ ( 𝑖 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ↔ ( 𝑖 ∈ ℙ ∧ 𝑖 < 𝑁 ) ) |
11 |
|
prmnn |
⊢ ( 𝑖 ∈ ℙ → 𝑖 ∈ ℕ ) |
12 |
11
|
nnnn0d |
⊢ ( 𝑖 ∈ ℙ → 𝑖 ∈ ℕ0 ) |
13 |
12
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑖 ∈ ℙ ∧ 𝑖 < 𝑁 ) ) → 𝑖 ∈ ℕ0 ) |
14 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
15 |
14
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑖 ∈ ℙ ∧ 𝑖 < 𝑁 ) ) → 𝑁 ∈ ℕ ) |
16 |
|
simprr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑖 ∈ ℙ ∧ 𝑖 < 𝑁 ) ) → 𝑖 < 𝑁 ) |
17 |
|
elfzo0 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑖 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑖 < 𝑁 ) ) |
18 |
13 15 16 17
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑖 ∈ ℙ ∧ 𝑖 < 𝑁 ) ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
19 |
18
|
ex |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ( 𝑖 ∈ ℙ ∧ 𝑖 < 𝑁 ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ) |
20 |
10 19
|
syl5bi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑖 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ) |
21 |
20
|
ssrdv |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ⊆ ( 0 ..^ 𝑁 ) ) |
22 |
|
ssfi |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ⊆ ( 0 ..^ 𝑁 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ∈ Fin ) |
23 |
8 21 22
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ∈ Fin ) |
24 |
|
breq1 |
⊢ ( 𝑝 = 2 → ( 𝑝 < 𝑁 ↔ 2 < 𝑁 ) ) |
25 |
|
2prm |
⊢ 2 ∈ ℙ |
26 |
25
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ∈ ℙ ) |
27 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) ) |
28 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
29 |
28
|
breq1i |
⊢ ( 3 ≤ 𝑁 ↔ ( 2 + 1 ) ≤ 𝑁 ) |
30 |
|
2z |
⊢ 2 ∈ ℤ |
31 |
|
zltp1le |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 < 𝑁 ↔ ( 2 + 1 ) ≤ 𝑁 ) ) |
32 |
30 31
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( 2 < 𝑁 ↔ ( 2 + 1 ) ≤ 𝑁 ) ) |
33 |
32
|
biimprd |
⊢ ( 𝑁 ∈ ℤ → ( ( 2 + 1 ) ≤ 𝑁 → 2 < 𝑁 ) ) |
34 |
29 33
|
syl5bi |
⊢ ( 𝑁 ∈ ℤ → ( 3 ≤ 𝑁 → 2 < 𝑁 ) ) |
35 |
34
|
imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) |
36 |
35
|
3adant1 |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) |
37 |
27 36
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 < 𝑁 ) |
38 |
24 26 37
|
elrabd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ) |
39 |
38
|
ne0d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ≠ ∅ ) |
40 |
|
sseq1 |
⊢ ( 𝐴 = { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } → ( 𝐴 ⊆ ℝ ↔ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ⊆ ℝ ) ) |
41 |
|
eleq1 |
⊢ ( 𝐴 = { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } → ( 𝐴 ∈ Fin ↔ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ∈ Fin ) ) |
42 |
|
neeq1 |
⊢ ( 𝐴 = { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } → ( 𝐴 ≠ ∅ ↔ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ≠ ∅ ) ) |
43 |
40 41 42
|
3anbi123d |
⊢ ( 𝐴 = { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } → ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ↔ ( { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ⊆ ℝ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ≠ ∅ ) ) ) |
44 |
1 43
|
ax-mp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ↔ ( { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ⊆ ℝ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 < 𝑁 } ≠ ∅ ) ) |
45 |
7 23 39 44
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) |
46 |
|
fimaxre |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
47 |
45 46
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |